Pi: ANEW APPROACH O FLEXIBILITY IN SYSTEM SOFTWARE

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

by

Dinesh Chandrakant Kulkarni, B2¢h.(E.E.), M.S.E.E.

David L. Cohn, Director

Department of Computer Science and Engineering
Notre Dame, Indiana

April, 1995



Pi: ANEW APPROACH O FLEXIBILITY IN SYSTEM SOFTWARE

Abstract

by

Dinesh Chandrakant Kulkarni

Conventional operating system design makes decisions based on assumptions about
applications’ usage of hardware and software resources. When the assumptions do not
hold, these decisions may create a mismatch between what an application wants and what
the implementation provides. This dissertation proposes a design approachPtalled
which reduces the potential mismatch by enhancing the flexibility of system software. A
system built using the Pi approach allows clients to participate in implementation deci-
sions at run-time througtiual interfacesithe first one for using the basic functionality

and the second one for changing the implementation.

The Pi approach useseflective achitectue for flexibility. It utilizes a self-repre-
sentation of a subsystem created usempuce objectsandcontracts which decide the
subsystens semantics. Contract implementations can be changed by clients through the
second interface. The visibility of a change is restricted to a desigsedpeusing a

mechanism calledcope-based dispatch

The Pi approach has been demonstrated by designing the Pi File System (PFS)
architecture and constructing its prototype implementation. The Pi approach has enabled
clients to control separate components of the implementation of the file system. For exam-
ple, naming and caching in the PFS implementation can be tailored by clients to their own

needs. The approach has allowed clients to make incremental changes to the implementa-
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tion and has ensured that théets of changes are limited to a client-specified scope like

a process or afile. Also, the overhead of Pi flexibility mechanisms is limited to a few indi-
rections, and hence the performance penalty is small. Experience with the file system
shows that it is possible to design flexible system software which meets the threefold

requirements of incrementaljtycope control and low overhead.
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1. INTRODUCTION

System software has to face the challenge of matching diverse needs of applications
to different characteristics of the resources that applications access. On the one hand,
applications use resources infeient ways and hence management of resources must
cater to their special needs. On the other hand, resources keep evolving, thus expanding
and altering the role of system software. Applications include browsers, databases and
simulators while resources may be hardware resources like CPU, mehséregtc. or

software resources like files, or communication streams.

The conventional approach to the design of operating systems emphasizes architec-
tures and implementations that deliver the best performance for ‘common usage’. In doing
so, the design approach makes assumptions about what is common usage and uses these
assumptions to optimize the implementation. There are two problems with this approach.
First, an application that does not fit the assumed common case is saddled with inappropri-
ate mapping choices and second, evolution of hardware and software resources puts
strains on the architecture and implementation leading to a mismatch between resources
and mapping choices. There is a penalty borne by applications as a result of this mismatch,;
their performance stdrs, where performance may be any of a number of qualitative or
guantitative measures such as functionditiency throughput or reliabilityAs operating
systems have matured and considerable experience has been gained in optimizing for the
common case, it is now possible and desirable to look beyond the common case and inves-

tigate means to reduce the mismatch.



Consider the virtual memory subsystem as an example. The classic least-recently
used (LRU) page replacement policy works fine for applications that show locality of ref-
erence. But it does not work well for applications that access data serially such as database
applications [StonebrakeB85] and applications that havedarworking sets [Franklin,

92]. The problem is that these applications have usage patterns fiafrdih those of
common applications assumed by designers. On the resource side, the policy of faulting in
a page works well for a uniprocessiout in a distributed system, distributed virtual mem-

ory based on faulting sefrs from thrashing and false sharing [NitzZhe31].

Such problems of mismatch between applications and implementations and imple-
mentations and resources are often addressed by bypassing existing implementations. In
other words, the application or some proxy for the application takes over resource man-
agement to the extent possible. But this approach defeats the role of system software as a
shared resource managér requires substantial additionalfe@t and the workarounds

may often be ad-hoc, unstructured and constrained by their very nature.

An alternative approach is to allow applications greater control over the implemen-
tation of system services [Anderson, 92], [Ha®®], [Young, 89]. Instead of defining an
Application Programming Interface (API) that insulates applications from mapping deci-
sions made by the implementation, it may be possible to let the application participate in
making those decisions and thereby make the implementation flexible. This dissertation
claims that it is possible to do so and addresses the problems faced by a designer who

adheres to this approach.

Current design of operating systems relieslostractions to present hardware and
other resources to applications [Loepere, 92]. Classic abstractions include processes for
CPU and memory resources, files for data and storage and sockets for communication.
They are implemented in tteabsystems of an operating system; e.g. sockets are imple-

mented in the communication subsystem. These abstractions are accessible to client appli-



cations or simplyclients, through arinterface. Implementation details are hidden behind

the interface. In the case of object oriented approaches, the implementation is said to be
encapsulated. As a consequence, an application writer is supposed to rely only on the
description (sometimes formal but most often informal) obdavior® of the abstraction

and not its implementation. In other words, an instance of the abstraction is treated as a
black box that can be accessed only through its interface which is implementation-inde-

pendent.

However in practice, transparency of the implementation does not hold [Sandber
85]. The observed behavior of an implementation goes beyond the abstract b&lmnsior
sider for example, a file abstraction whose interface consists of read and write functions.
A read preceded by a write at the sanisatfin a given file is expected to return the previ-
ously written value. ypically, a client knows this aspect of the behavior of the file
abstraction and expects good performance fromimplementation for small amounts of
data read or written. But an implementation that flushes the written data to disk is likely to
be noticeably slower than an implementation thafebsithe written data in memoryhis
is a client-visible diierence in the behaviors of the implementations. It exposes the imple-
mentation in a way not documented by the interface and not covered by the behavior of
the abstraction. Thus, it violates the black box assumption about the implementation. Such
client-visible features of an implementation are often important for making an abstraction

usable and hence they should be controllable.

Recent work in languages has shown the value of converting black-box implementa-
tions into more controllable forms by exposing some of the implementation decisions
through asecond interface [Kiczales, 91]. As before, the first interface presents the func-
tionality of the abstraction in a reasonably implementation-independent form and the sec-

ond interface provides aption of participating in specific implementation choices. This

1. The term, semantics is sometimes used in literature in place of behavior



approach is depicted in Figure 1.1. This approach is calleduidlenterfaceapproach
[Kiczales, 92a]. The resulting implementations are cadieen implementationand the
architectures that they are based open achitectues Alternatively they are also called
flexible implementations anddnitectues In the rest of the document, we will use the
termsopennesandflexibility interchangeably to denote a property of an architecture or

implementation that allows client participation.

Client-1 Client-1
g 5
c c
_ - /— 2nd Interface
Client-2 Client-2 A
Black Box Approach Dual Interface Approach

Figure 1.1: Black Box and Dual Interface Approaches

Of course, as shown in the figure, a client can choose to not worry about the addi-
tional control and just use thiefault implementatiariThe default implementation would
be similar to the implementation obtained in case of the conventional approach which
makes the common case assumption and applies relevant optimizations. Thus, the second
interface is optional and not a mandatory burden for application writers. The idea of real-

izing flexibility through dual interfaces forms a basis of the work described in this docu-
ment.
The goal of this work is to devel@m approach to building flexible system software

and to demonstrate it in an example subsystem - the file systerards this end, we will

discuss some of the problems encountered in designing flexible system software and cer-



tain techniques to address them. In that discussion, we will consider flexibility as the main
design goal or figure of merit and explore its costs and trddevidh respect to more tra-
ditional design goals such as latency and protection. Furtigewill investigate the file
system as an example subsystem for opennessvil\propose an open file system archi-
tecture and discuss its advantages over existing file system architectaresll \Also

present the experience gained from implementing its prototype. A file system has been
chosen as the subsystem to concentrate on because it is important to a wide range of appli-
cations, it manages a diverse set of resources and it is convenient for prototype implemen-
tation. This work is conducted in the context of existing operating systems and widely
used systems programming languages - C and C++. As such, we will take for granted
basic operating system services provided by commercial operating systems and the ensu-

ing constraints.

The next section discusses the problems faced in designing an open system software
subsystem. Chapter 3 outlines some of the related work in languages and operating sys-
tems. It is followed by a section proposing a basic architectural approach called Pi and dis-
cussing issues related to the problems described in Chapter 2. A new file system
architecture called the Pi file system architecture is described in Chapter 5 and its proto-
type in Chapter 6. Chapter 7 addresses some of the caveats and concerns expressed by the
operating system communit€hapter 8 describes some directions for future work and

concludes.



2. PROBLEM OF FLEXIBILITY

A designer who has accepted the tenet of open implementations faces a number of
problems. In this chaptewe will discuss the key problems and their ramifications to build
a foundation for the Pi approach. But we will start with a simple example to shed more

light on open implementations.

Consider a file abstraction. Here we will restrict our focus to files as persistent byte
streams. A simple interface to a file abstraction could consisip@f(), cl ose(),
seek(),read() andwite() calls. While this set of calls does provide the core function-

ality of a file, it leaves a lot of aspects to design choices. Here are some examples -

* When does a write become persistent, when the write call returns or at some later

point?
« If there is a crash, under what circumstances is the data recoverable?

« If the file is normally resident on a remote serderes the ead() call go over the
network or does it use a cached copy? Under what circumstances does the local file

system contact the server?

File system designers have grappled with these questions and made reasonable deci-
sions based on measurements and tréglddbwever even good design and engineering
judgement by the designer cannot compensate for what clients know about their usage.
Usage information is mostly client-specific and is sometimes available only at run-time.
The basic five-call interface does not allow a client to convey enough usage information to
influence implementation. Butsecond interface would allow a client to control aspects

of the implementation that were considered the prerogative of the dedgeatrhe()



call could be added to request that a temporary copy be stored in memory in anticipation
of read/write calls by clients, and aush() call could be added to override datafeuf
ing. This second interface is shown schematically in Figure 2.1 Thus, the addition of a few

calls seems to provide a solution for the questions raised above.

Client 1 Client 1 open
lose
open \ ¢
\ close seek File
seek| File read
read / write
/ write _ cache flush
Client 2 Client2
|

Figure 2.1: File Abstraction and Client Control

However this solution leads to the following questions:
» How are the client-controllable aspects separated from the rest of the implementa-
tion?

* How should an application exercise control over the implementation? Should it

instruct the implementation or should it just declare its mode of usage?

* What should be the form of an applicat®mparticipation. Should it only choose
between alternatives or provide its own custom implementation for parts of the sys-

tem? In the latter case, how much does the application need to provide?
» How should the conflicts between multiple clients sharing a subsystem be handled?

* What is the cost of flexibility?



We will use these five questions to explain the problem of flexibility in this chapter
and to guide the development of the Pi approach described in Chapter 4 and the evaluation
of the approach in Chapter 6. The discussion of these questions will help us in defining the
scope and emphasis of our approach and in relating it to the approaches used in other sys-

tems.

2.1 Separating Client-Control

There are two basic approaches to allowing clients to change a subsystem imple-
mentation. The first is simpler and more conventional harfdsppfoach. Here, abstrac-
tions are defined at a low-level so that applications can add their own layers of
functionality on top of the subsystem that realizes the abstractions. The second approach is
more complex and uses a second interface. It allows a client to change existing implemen-
tation instead of adding new layers and permits the use of a complex, non-layered struc-

ture for subsystem implementation.

The first approach leads to a clean and simple layered structure as in communication
protocols. Lower layers provide basic services such as sending and receiving datagrams or
byte streams. Clients add layers on top for additional services like encryption or compres-
sion. In such cases, applications make decisions that cannot be made reasonably by lower
layers [Saltzer84]. Specificallya layered structure allows an application to implement
the policy of its choice in an additional or substitute lagerch a layer uses the mecha-
nisms provided by a lower layer of the subsystem as shown on the left hand side in Figure
2.2. In the figure, Client 2 is shown using the layer L2’ instead of L2. For example, an
application can encrypt only a small and sensitive portion of data while avoiding the over-

head of encryption for majority of packets exchanged using a UDP socket.

Unfortunately a layerbased separation of application controlled decisions from sys-

tem software mechanisms may not be possible. First, a higher laydo edmat is not



Client 1 Client 1

\ L3
Client 2 L2 4
L1
v / Client 2
L2 LO

Figure 2.2: Layered and Alternate Approaches

done in the lower layers, but it cannetdo what is done in the lower layers. If the file
abstraction from our example is implemented such that persistence is delayed till some
point after the completion of the write call, a layer on top cannot provide a write call with
guaranteed persistence in its behavié&econd, layering can introduce significant over-
head, especially when the cost of crossing from one layer to another is substantial. For
example, performance problems have been traced to inappropriate layering in communi-
cation protocols [Crowcroft, 92]. Third, it may not be possible to cleanly separate policy
layers from mechanism layers due to subtle interactions between them. A good example of
such interaction is recovery policies that cannot be combined with certain concurrency

mechanisms used in transaction[kV, 89].

Thus, in general, the parts of an implementation subject to client control are not eas-
ily separable from the rest of the implementation. Hence, it may be necessary to build
flexibility in different components of a subsystem and then present it to the clients through
a second interface. Accordingip Chapter 4, we will propose that a subsystem be built as
a framework of contracts and that clients be allowed to control contract implementations
separated from the framework, through the second interface. Then, in Chapter 5, we will

illustrate the separation in a file system architecture.



The inability to separate client-controllable parts using simple solutions like layer-
ing makes the first question from our list non-trivial. It also leads to the second question: if
clients cannot add new customized layers, then how do they use flexibility and convey

information about the right implementation choice?

2.2 Nature of Client-Control

The second interface may contain functions to declare the desired implementation
choice. Alternativelyor in addition, it may contain functions to explicitly instruct the
implementation to take certain actions. These two approaches presengntifradeds

for the subsystem developer as well as for client developers.

2.2.1 Declarative Approach

In some cases, a client can declare its mode of usage and let the subsystem take care
of effecting appropriate implementation decisions. An example would be thepeal)
with an agument indicating that the file is going to be accessed in read-only mode or in
sequential mode. It is then up to the implementation to decide the implications of the dec-
laration. There are two obvious benefits of such a declarative approach. It is easy for the
programmer developing a client, and the separation of responsibilities between the client
and the subsystem is clean. An easier approach is likely to get used more often and a clean

separation is likely to produce more robust implementations.

Moreover the clean separation allows considerable lattitude to the subsystem imple-
mentor A declaration can be considered in the overall scheme of the subsystem and then
acted upon. For example, if the client declaration indicates that it would be beneficial to
preallocate a lge set of bders, a communication subsystem can set asiderisudccord-

ing to the available resources and the demands from other clients.

However the declarative approach is limited in its capabiliyly those options

that are explicitly designed and implemented by the subsystem developer are available to

10



the client. Hence the approach is constrained by knowledge of what actions need to be
taken in response to client declarations and the burden of implementing all those actions.
For example, a virtual memory implementation may allow an application to declare page
access policy to be sequential and consequently favor an MRU replacementtglity

an application wants additional functionality not expressible as a page-accesstipaticy

the virtual memory system would be unable to cater to it; e.g. an application cannot have
the virtual memory system decompress pages on the fly if they are stored in compressed
form in the backing store. Thus, such a virtual memory subsystem would be open only to

the extent of the dérent declarations that it can interpret.

Further declarative style of control is not generic. The implementation required for
supporting a set of declarations may not apply to other declarations for the same sub-
system, let alone to other subsystems. For example, an implementation supporting multi-
ple paging policies does not necessarily simplify the implementation for encrypting pages;
nor does it help in implementing a flexible communication subsystem. Hence, ft-is dif

cult to develop a coherent design approach if the declarative style is the primary focus.

2.2.2 Procedural Approach

Imperative or procedural control over the subsystem is an alternative to the declara-
tive approach. In procedural control, an application can instruct the subsystem to take a
certain action. A subsystem developer supporting procedural client-control can provide a
set of mechanisms and let the application decide how to use the mechanisms to obtain the
desired policy For example, a distributed file system could providesh() andl og()
calls as mechanisms; the former to transfer data frofersufo the remote file-server
disk and the latter to append an entry to a log maintained on the local disk. Consider a case
where thew it e() call has a default policy of biefing writes in memory before batching

them together to send to the serddere, the reliability of writes can be improved by
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using either of the mechanisms. For infrequent writessh() may be more suitable

while for a rapid sequence of writesg() may be more appropriate [Ousterhout, 88].

Now consider a client that needs the extra reliability not provided by the default
implementation. A client can implement afdient policy like ‘persistence upon return
from write’ or ‘log before write’ using the subsystem-provided mechanisms. Such policies
can be obtained by a client through its own policy routifiegssh_ wite() and
l og_write() as shown in parts (a) and (c) of Figure 2.1 respecti@agresponding code
for declarative style is shown in parts b and d respecti@dge fragments are shown in

C++ - like pseudo code without type annotations.

flush wite(file, buffer, size)

{ ite(file
@ flush(file

buf fer, size);

~— -

/1l use flush wite to wite

/1l client code

/1 declare usage pattern: need persistence
(b) decl are(fil e, PERSI STENCE ON WRI TE)
/] use wite as usua

}

log wite(file, buffer, size)

log(logfile_nane, file, buffer, size);
(© wite(file, buffer, size);

/1l use log wite to wite

//client code

/1 declare usage pattern: frequent wites
(d) declare(file, WRI TE_ | NTENSI VE) ;
/] use wite as usua

}

Figure 2.3: Procedural and Declar ative Client-control
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As shown in this example, procedural control can be a reasonable alternative for
declarative control. Furthegprocedural control can provide additional power to clients by
allowing them to compose more powerful control strategies using the basic subsystem-
provided mechanisms. In the above example, if procedural control is available, a client
could combine thel ush() andl og() calls to achieve extra reliabilituch a combina-

tion may not be possible in the declarative style.

The additional power of composition gives the procedural approach a substantial
advantage over the declarative approach. In fact, declarative control could be built on top
of procedural control. Furthgorocedural control is more generic. A small set of powerful
mechanisms could be applied tofeient parts of a subsystem and tdedtént subsystems.

On the other hand, procedural control is somewhat complex for a client. An application
exerting procedural control over a subsystem needs to know hosultfyastem works.
Whereas an application following the declarative approach need only know happlihe
cation works. Specificallyin the procedural approach, a client programmer needs to know

what actions should be taken to ensure the behavior suitable for the client.

Overall, the power and genericity of the procedural approach outweigh the addi-
tional potential responsibility for clients. For the generic flexibility approach that we are
interested in, procedural rather than declarative control is more appropriate. In the Pi
approach discussed in Chapter 4, the second interface provides procedural control through
operations for changing contract implementations. Procedural control provided using con-

tracts also fits well with diérent strategies for client participation.

2.3 Client Participation in Implementation

The next step beyond procedural control is to allow a client to provide its own
implementation of parts of the subsystem. There are three main issues related to client par-

ticipation, the extent of participation, the flow of control and run-time changes.
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2.3.1 Extent of Participation

In an open architecture, implementation responsibility can be split between the sub-
system and the client. Partitioning of implementation responsibility is in fact crucial even
without concern for client implementations. So far we have treated the designers and
implementors of a subsystem as one enititypractice, multiple implementations are often
provided for an architecture. An architecture typically defines the interface for clients, the
basic components and the rules for interactions between those components. Some of these
implementations may be built long after the initial design, and perhaps under constraints
that are not shared by other implementations of the same architecture; e.g. arkle W
[Huston, 93] is an implementation of the AFS file system architecture [Howard, 88] that
has to address disconnected operation not handled by regular AFS implementations.
Unlike AFS, which can be used only on workstations that remain connected to the net-
work, Little Work can be used on machines that switch between networked and stand-
alone mode. Such a change involves a substantial implementdtonbefyond what
would be required for developing a client that controls the implementation. Hence, an
open architecture needs to allow customized implementations, perhaps derived from
generic implementations through appropriate partitioning of responsibility for core com-

ponents and customizable components.

But client-participation increases this need further since client developers may have
neither the expertise nor the time that a subsystem implementor has. Thus, a flexible archi-
tecture should allow implementations that not only cater tierdifit client needs and
resource constraints but entailaage of participation; from simple substitution of a com-
ponent to a major reimplementation. The actual implementation of the architecture can be
viewed as a collaborativefeft between the subsystem implementor and the client imple-
mentor One extreme would be the black box approach in which the subsystem is entirely

implemented without client participation and the other would be a subsystem integrated
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by a client out of components. The Pi approach allows three distinct levels of usage for cli-

ents as will be discussed in Section 4.2.2

Client components can take on partial responsibility if it is not very burdensome. In
other words, the subsystem must not abdicatgel@arts of implementations as client-
responsibility This leads to the key propertyiatrementality as a goal and a criterion for
comparison and evaluation of client participation [Kiczales, 93]. An example of client par-
ticipation with coarse granularity is the external pager in Mach discussed in the next chap-
ter. Instead, the design proposed in [Krue@®&] which allows fine-grained control over
page-fault handling and replacement page selection fares better according to the incre-
mentality criterion. In the Pi approach, contract implementations allow incremental modi-

fications to a subsystem.

2.3.2 Callbacks and Frameworks

Altering the flow of control within a subsystem implementation is fundamental to
flexibility. But with client participation, control may have to be transferred from the sub-
system code to the client code. When a client determines the flow of control, the sub-
system implementation takes the simple form of a library or a server that returns control to

the client after completing a request.

Callbacks may be necessary when the client does not entirely determine the flow of
control. Using callbacks, the subsystem can fill in gaps in its implementation using com-
ponents supplied by the client. These components provide the client an opportunity to cus-
tomize the subsystem to suit its needs. An example would be a virtual memory subsystem
that allows a client to install its own page-fault handBrch a handler for a client could
provide a service like compression and decompression if desired. Hovmeegrating a
client-component with the rest of the implementation is oftdicdif. The rest of the sub-

system implementation critically relies on the client component to do a task that is nor-
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mally done by a part of the subsystem. Hence fewer assumptions can be made and the
coupling between the client-component and the rest of the system has to be low and well-
defined. In case of callbacks, additional provisions are necessary to bind symbols

imported by the subsystem to code and data exported by the client. This function can be

performed by the second interface of the subsystem.

In the object-oriented approach, client-supplied components could simply be
instances of classes derived from the classes defined in the subsystem architecture. The
resulting structure is referred to asramework [Deutsch, 88] and provides a more man-
ageable way of integrating client-components. Thdewihce between the library
approach and the framework approach is shown in Figure 2 Wwilshow how to build
such frameworks using substitutable contract implementations in Chapter 4 and then

design a framework for file systems in Chapter 5.

Client Client Framework
—+—» Lib-1
Client
—— L
Code
——» Lib-2
—> Direction of Calls

Figure2.4: Library and Framework Approaches

2.3.3 Run-time Participation

A third important aspect of client participation is whether the client dactahe
behavior of the subsystem while it is running. Allowing changes in the behavior of a sys-

tem after it has been compiled and linked is important for several reasons. First, it fits well
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with the practice of shipping only binaries for most system software and second, it allows
clients to make changes at run-time, possibly based on external inputs that they receive.
But most of the system software is developed using compilation oriented languages like C
and C++ that perform static type checking and lack significant run-time support. This is in
contrast to applications that use run-time environments like Lisp and Smalltalk. Besides,
the overhead of a run-time environment, even if it were to be available, is often an imped-
iment to performance. So it is important to selectively use run-time support for integrating
client components. The Pi approach proposes dynamic loading of object modules for this

purpose (Section 4.3.2.1).

So far we have discussed how a client can change a subsystem implementation. But
a change in the subsystem implementation is likelyfecemultiple clients. Hence, there
has to be some way of isolating thé&et of changes to the requesting client. Scope con-

trol is required to restrict the visibility of changes.

2.4 Scope Control

The most important characteristics of system software are that it is shared and that it
arbitrates access to resources for multiple applications. As such, it is responsible for
allowing a client to request a change for a cedaipe and then ensuring that the change
is visible within and only within the scope. This responsibility is casiggbe-control

[Kiczales, 92a].

For example, if a database application asks for MRU page replacement, a word-pro-
cessor client that expects to see an LRU should not be switched to MRU. In other words,
the change of policy should be visible in a scope containing the database; it should not be
effective in a diferent scope containing the word proces®dhile the requirement of con-
trolling the scope wherein a change is visible seems fairly simple and obvious, the impli-

cations for the designer are not. Current design approaches assume that all clients are
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equal and provide the same implementation. In our approach, it is necessary to treat clients
not as just as multiple entities but also as distinguishable entities. Fditfegent imple-
mentations have to be somehow associated withrdift clients. The Pi approach uses

scope-based dispatch for this purpose as discussed in Section 4.1.2.2.

It is important to note that scope-control is not necessarily equivalent to complete
isolation. Whenever resources are shared, a change in resource usage for one client could
indirectly afect other clients even if they get the original implementation. For example, if
a clients request for an implementation that uses addition&dsufor fast communica-
tion is granted, other clients using the default implementation coulet superformance
penalty The total pool of bdérs is shared by all implementations. Hence, the privilege to
change implementation may have to be restricted. Furierissue of protection from
malicious or errant clients is an important one, but one that is beyond the scope of this

work.

The discussion of problems associated with flexibility would be incomplete without
considering the performance costs that flexibility imposes. In fact, since system software
is required to be &€ient, flexibility is often limited by the amount of performance penalty

that clients are willing to bear

2.5 Flexibility and Performance

Flexibility may entail a performance penalty in two ways. First, the very existence
of the mechanisms and checks that a flexible implementation requires involves some over-

head. Second, the use of certain flexibility features have their own associated costs.

Clients that utilize the default behavior of a subsystem should see as small a perfor-
mance penalty as possible. Since they are not using the benefits of controlling the sub-

system behavigthey should not be expected to pay for it. Additionaigce the default
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behavior is often adequate or even appropriate foga lmmber of common clients, this

requirement is necessary for good overall performance.

Clients often utilize flexibility features for better performance. If the overhead of
changing the implementation itself is significant, the resulting performance benefit may
not be worth the extra programmingdaet. As an example, consider a virtual memory sub-
system that allows a client pager to select a page for replacement when a page fault occurs.
If the overhead of calling the relevant client routine is comparable to the cost of saved

page faults, the flexibility feature will not be used.

Thus, the cost of flexible mechanisms themselves must be kept under control. This
is consistent with our choice of C and C++, languages that emphasize avoiding hidden
costs. After careful consideration, we decided not to use more flexible but overhead-prone
languages with extensive run-time environments. Specific design decisions and language
and operating system features that contribute to overheads in flexible implementations
will be discussed in Chapter 4. In Chapter 6, we will present the overhead observed in a

prototype implementation that uses the Pi approach.

2.6 Overview

Based on the above discussion of five questions we can refine the goal of the thesis.
In Chapter 1, we stated that our objective is to design an approach for flexibility in system
software. Now we can take it one step further and say that our goal is to design an

approach that
 delineates the client-controllable parts of the implementation;
 provides procedural control;
+ allows incremental modification to an implementation;

» enables scope control for client-requested changes; and
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* incurs little or no overhead when the flexibility features are not used and only a

modest overhead when the features are used.

We will refer to these five key points in the following chapters to assessf¢lctveiness of

flexibility approaches and implementations.

So far we have discussed the issudsding flexible implementations independent
of each otherIn practice, there is a strong interaction between them. It is possible to
design an extremely flexible system and allow clients fine-grained control over its func-
tioning at the cost of heavy overhead and poor protection. Instead, appropriatddradeof
need to be made in specific implementation and where necessary in the architecture itself.
We will discuss tradets made in the Pi approach and in the file system architecture in

Chapters 4 and 5.

In the next chaptemwe will discuss specific approaches used to address some of
these problems in languages and operating systems. Building on some key ideas employed
by language designers, we will outline the Pi approach for adding flexibility to operating
system components.&Will also discuss some implementation issues that arise in a com-
mercial operating system. Howeysome of the problems discussed in this section have a
strong subsystem-specific component. Hence we will investigate the file system as an
example subsystem, and go through the process of addressing the need for client control

and then building it in the architecture and implementation of a file system.
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3. BACKGROUND AND RELATED WORK

The issues related to flexibility have been studied from many angles. Releamntly
guage designers have proposed important structuring methods for flexibility in functional
and object-oriented languages. Reflective architectures which are explainedHaelew
proved particularly useful in languages and will be used in the Pi approach. On the other
hand, operating system designers have focused more on specific partitioning of function-
ality and performance tradésfinvolved in partitioning. Once a subsystem is partitioned
into userlevel servers, the servers can be replaced with custom servers by a client; a tech-
nigue that will be emphasized less in the Pi approachwilN review selected related
work in these two areas to provide a basis for the approach proposed in the next chapter
First howeverspecific terms will be defined to simplify the discussion of related work as

well as the proposed approach.

3.1 Terminology

Some of the terminology in this section has been commonly used in areas like artifi-
cial intelligence and functional programming for a number of years. Its usage in operating
systems is very recent. Many of the terms are discussed in detail in [Maes, 87b] and

[Wand, 88].

3.1.1 Reification

Reificationis the process of making an implicit entity explicit. By reifying an entity

it can be accessed through function calls, replaced or otherwise manipulated. For example,
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in a virtual memory subsystem, a kernel can reify the page-fault handler and then allow a

client to select an alternative page-fault handler implementation.

3.1.2 Self-representation

The Salf-representation of a system is the reification of that systemstatic structure
and dynamic behavioFor example, a communication subsystem can have a self-repre-
sentation in the form of protocol stacks or graphs. The self-representation may or may not
be modifiable. Self-representation subsumes meta-data; i.e. data about the system such as
the schema of a relational database.Will deliberately avoid any mention of §iafency

or minimality of the self-representation to avoid getting into intractable issues.

3.1.3 Metacomputation

Metacomputation is a computation performed on the representation of the system
rather than the subject of the system. For example, generating a page fault is object com-
putation (or simply computation) for a virtual memory subsystem while installing a
replacement-page selector is a metacomputation. Obvjdlislgistinction between meta-
computation and computation depends on the definition of the system and its subject. In
object-oriented parlance, the objects representing a system are called metaobjects and
metacomputation refers to invoking functions supported by metaobjects. On the other
hand, computation refers to objects on which the system acts; e.g. reading a file is compu-

tation while changing the caching policy is a metacomputation.

The object-metaobject relationship can extend beyond a single level; i.e. a metaob-
ject can have another object as its metaobject. Thus, in principle, an infinite tower of
metaobjects can be constructed. In practice, the tower is normally restricted to a few lev-

els.
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3.1.4 Reflection

In case of languages, a distinction between metacomputation and reflection is partic-
ularly importantReflections a special case of metacomputation where the language used
for metacomputation is the same as that used for computation. Since we will almost
always use the same programming language in both the cases for our work, we will use
reflection and metacomputation synonymoublgwevey the distinction is important for
reviewing related work. An example of reflection is a CLOS interpreter that can be modi-
fied using CLOS while a non-reflective metacomputation would be modifying a Prolog

interpreter written in Lisp using Lisp.

The result of a metacomputation on a system is said tefleetednto a change in

the behavior of the system.

3.1.5 Causal Connection

Causal connectionefers to a connection between the self-representation of the sys-
tem and the system wherein any modification of the self-representatieffectedin a
corresponding change in the structure and/or behavior of the system. Thus, with causal
connection, the self-representation is not simply information about a system but a determi-
nant of the behavior of the system. For example, consider a system that stores the func-
tions it uses in a table. In such a system, if a metacomputation changes one of the entries in
the table, the system would start using the new function instead of the old one. In this case,

a causal link exists between the system and the table which is its self-representation.

In summarya systematic way of making a system flexible, or open, consists of two
steps: Develop a self-representation of the system that has a causal connection with the
system, and then provide an interface to the self-representation for metacomputations. W

will employ this approach in the next chapter
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3.2 Flexibility in Languages

This section illustrates the reflective architectures in three languages aniicthe ef
cies of those architectures. It also shows the distinction between the results obtained in
languages with run-time environments and those obtained in compiled languages. This
distinction is important for our approach since we are using a compiled language. The key

points in these languages that build a background for the Pi approach are:

» Reflection in 3-KRS: Basic structure of a reflective system composed of self-repre-

sentation, causal connection and metacomputation.

* CLOS metaobject protocol: Metaobjects for changing the implementation and sep-

arate metaobject interfaces for client-control.

* Open implementations for C++: Use of indirection and additional run-time infor-

mation.

3.2.1 Reflection in 3-KRS

Maes [Maes, 87a] has presented a coherent theory of reflection in computational
systems and in particular in languages. Her approach relies on reflective architectures and
an explicit separation between computation and metacomputation. She has also applied

the approach to an object-oriented language, 3-KRS which is implemented in Lisp.

The basic structure of a reflective system as proposed by Maes in [Maes, 87b] is
shown in Figure 3.1. There are two domains shown as rounded rectangles in the figure. A
domain containing the system and the other one containing the set of subjects of the sys-
tem labelled ‘some part of the world’. For example, if the reflective system is a drawing
program, ‘some part of the world’ would be lines, circles and other shapes. The box
labelled ‘Data’ contains information about both the domains as indicated by two outgoing
arrows. The information about the systermiwn domain is the self-representation. It is

causally connected to the system; i.e. it represents the dynamic state of the system rather

24



than providing a static description of the design of the system. A change in the reflective
system is accomplished through metacomputation whieltafthe self-representation of
the reflective system. The fact that a reflective system &egt & own domain as a result

of metacomputations, is indicated by an arrow labelled ‘acts on’.

T N

r
represents Data epresents
some part
reasons about - of the world
Program and acts upon
acts Domain
Executer on
. -
KReerctlve Systerr/

Domain

Figure 3.1: A Reflective System

A concise and precise self-representation is crucial for a reflective architecture. If
the behavior of a system can be captured in terms of a few reifiable entities, then the task
of establishing a causal connection and providing an interface for metacomputation is sim-
plified. Hence, a reflective system must be designed to alfeatigt self-representation.

3-KRS language is based on objects and enabledeativet self-representation.

3-KRS programs deal with objects and can themselves be represented as objects for
the purpose of reflection. Each object consis®aif slots refer to other objects fiters
that can be defined in the implementation language -. [ABBbjects inherit from a top-
level object calleanj ect . Thus, an object is the main semantic entity and hence the self-

representation consists of metaobjects.

When a session with a 3-KRS interpreter starts, the interpreter creates a set of

objects callegbrimitive objectdo bootstrap the language system. Primitive objects include
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oj ect, Sl ot , Nunber , Message, Obj ect - Def i ni ti on etc. All objects used in 3-KRS pro-
grams are specializations of these primitive objects. The primitive objects, typically hid-
den in implementations of other object-oriented languages, are reified as primitive

metaobjects.

All metaobjects inherit from an object callest a- Gbj ect. Metaobjects allow a
program to read and change the structural information and behavior of the objects used by
the program. For example, a class browser can inspect the slots contained in an object - a
structural aspect, while a program could alter the process of instance creation - a behav-
ioral aspect. Thus, 3-KRS provides self-representation by reifying the interpreter for the
language. The problem of infinite tower of metaobjects is avoided by using a lazy mecha-

nism for their creation.

3.2.2 CLOS Metaobject Protocol

The CommonLisp Object SystemMetaobject Protocol (CLOS-MOP) was designed
to ensure diciency while retaining elegance in CLOS [Kiczales, Q§taobject proto-
cols are interfaces to the language to allow users to incrementally modify the larsguage’
behavior and implementation. The metaobject protocols are accessible from within the
language. Thus, the distinction between language designers and language users is blurred.
The CLOS implementation itself is structured as an object-oriented program and thus, is

subject to manipulation.

CLOS objects are instances of CLE&sses which consist oflots. Classes contain
methods that can be invoked by clients. CLOS supports multiple inheritance for special-
ization andgeneric functions for polymorphism. It also suppomaulti-methods; i.e. meth-
ods whose implementation is selected on the basis of multguenants. A feature called
method combination allows a sequence of methods to be automatically invoked to allow

preprocessing and postprocessing.
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CLOS MOP incorporates these language features into its self-representation through
a basic metaobject class for each of the program elements. The basic metaobject classes
are:cl ass, sl ot-definition, generic-function, method andmet hod- conbi nat i on.
A metaobject class is a subclass of exactly one of these classes. A metaobject is an
instance of a metaobject class. Each metaobject encapsulates information about the corre-
sponding program entity either directly or through a reference to another metaobject. The
class of each metaobject supports an interface or a protocol to provide or change the
encapsulated information. Let us consider an example to see how such a protocol can be

used.

Consider a clagsthat inherits from multiple superclasseande. The superclasses
d ande in turn, inherit from their superclasses as shown in Figure 3.1 which is adapted
from [Kiczales, 91]. When a method is invoked on an instance offclss CLOS imple-
mentation searches the classes in the inheritance graph for the invoked method. The search
proceeds in an order defined by the class precedence list. A client can change the class
precedence list by providing its owinput e- cl ass- precedence- | i st method. In the
case of multiple inheritance, a programmer can change the order in which superclasses are
searched for a matching method. For the inheritance hierarchy shown in Figure 3.1, a pro-
grammer can change the order from the default order tdeaatif one, say depth-first
preorder traversal. Interestingtye client-requested order shown in the figure was in fact
in use in another implementation of object-oriented Lispeint from CLOS, and thus,

control over the class precedence list was a need that had to be accommodated.

The CLOS MOP has been available in commercial implementations and its usage
has demonstrated that metaobjects are f@atefe way of making implementations open

and that open implementations indeed address the needs of client developers.
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Default order
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d e Client-requested order
(f dabec..)

Inheritance hierarchy Class-precedence for method search

Figure 3.2: Client-control in CLOS

3.2.3 Open Implementationsfor C++

There are two open implementations of C++, Open C++ which aims at run-time

flexibility and AC++ which aims at software evolution without recompilation.

Open C++, implemented at the University okyo, has attempted to apply metaob-
ject protocols to C++ [Chiba, 93]. It reifies a C++ function call through a metaobject as
shown in Figure 3.1. An object together with its metaobject is called a reflective object. A
reflective object can change its behavior in response to metaobject calls. A reflective
object has two distinct interfaces: one for object computation and another for metacompu-
tation, which is supported by the metaobject. Open C++ also allows an ascending tower of
metaobjects which are generated by a custom transldtertranslator uses directives in
C++ source code, and special conversion methods provided by the programmer to gener-
ate appropriate C++ metaobjects. Figure 3.1, which is adapted from [Chiba, 93] shows a
metaobject generated by the Open C++ translttottercepts a call forunc(), a mem-
ber function of the object in the figure. Such metaobjects can then be used for applications

like synchronization and communication among distributed objects.
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Figure 3.3: Open C++ and the Use of a M etaobject

AC++, on the other hand uses a modified C++ compiler instead of a translator to
provide much additional control [Paleé82]. Its goal as a compilation system, is to support
class changes with minimal recompilation so that software updates can be distributed in

binary form. It provides the following facilities:
* Member extension: new member functions or variables can be added to a class.
» Class extension: a new base class can be added to an existing class.

* Member promotion: functionality can be moved from a derived class to a base

class.

» Override changing: altering overriding of a base-class function in a derived class.

Unlike 3-KRS and CLOS, C++ does not have an interpretive environment. Hence
implementors oAC++ had to build substantial run-time support into the generated code.
This support is provided as a set dset variables (one per member) to resolve references
to class members. Hence, the code generated yGhe compilation system leads to a
substantial run-time performance penalty over that generated by an ordinary C++ com-

piler. Most importantlyfrom our point of viewAC++ illustrates the diiculty of obtaining
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flexibility in a compilation-based environment and the resulting costs compared to the its

less flexible counterparts.

3.3 Flexibility in Operating Systems

In this section we will discuss some of the operating systems that have emphasized
flexibility. The following operating systems have been selected to coveredif
approaches and constraints. Their overall goals and scopas aszessarily comparable
to the work in this document. Hence, we will focus only on aspects that are relevant to

flexibility. The most significant flexibility-related points are:
» Hydra: Policy/mechanism separation.

* Alto single user system: Replacement of system modules with client-supplied mod-

ules.

* Mach family: Microkernel approach relying on usevel, multiple servers for

operating system functionality
» x-kernel: Flexible and &tient decomposition of the communication subsystem.
» Spring: Strongly-typed interfaces and flexible object communication.
» Apertos: Metahierarchies for maximum client-control.
At the end of the description of each operating system, we will briefly relate the sys-

tem to the design goals stated in Section 2.6. Then in the last section of this, etapter

will discuss the remaining flexibility issues addressed by the Pi approach.

3.3.1Hydra

Hydra was implemented at Carnegie Mellon University in the early 1970s as a ker-
nel for a multiprocessor system (M, 74] [Wulf, 81]. The project had two goals - to pro-

vide an environment for fefctive utilization of the multiprocessor and to facilitate
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construction of such environments. It is the latter that is of particular interest to us. The

design of Hydra was based on the following principles:

» Separation of mechanism from policy: A set of mechanisms was considered appro-
priate for a kernel but policy decisions were carefully avoided to the extent possi-

ble.
» Rejection of strict hierarchical layering: Building blocks were typed procedures.

» Protection: Protection was uniformly provided by the kernel using capabilities
[Fabry, 74] They were allowed to have any semantics defined by the téyledr

software.

The Hydra kernel supported three kinds of basic entit@scedure, local name-
gpace (LNS) andprocess. Each procedure contained a list of references, each of which
specified an object and the actions that the procedure could perform on those objects in
terms of capabilities. The kernel provided a mechanistaLE, to examine the actual
parameter capabilities specified by the caller and to create a new LNS for the duration of
the call. Access rights provided by a caBeecified capability could even be expanded
for the callee to allow it to provide privileged services associated with system software.
Since such protected procedures were not limited to kernel-developers, the system could
be easily extended by applications. For example, a kernel defined object called POLICY

allowed usetevel schedulers to communicate with the kernel scheduling mechanism.

Hydra was a pioneer system in delineating client-controllable parts through policy/
mechanism separation and in emphasizing extensibiliggrovided procedural control
and a limited amount of incrementality in restricted areas like scheduling.pobladgo
had rudimentary scope control in the form of client-designated procedures for performing
some operating system functions. The overhead imposed by the CALL mechanism was
considered significant but the problem was attributed to implementation rather than design

[Wulf, 81]. Since Hydra was built on hardware, rather than an existing operating system,
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the mechanisms and implementations are not directly comparable to those in this docu-

ment. But we have built on their idea of encapsulating resources into fine-grained objects.

3.3.2 Alto Single User System

Lampson and Sproull [Lampson, 79] implemented an open operating system for the
Alto personal computetike DOS (which was developed later), their system did not pro-
vide preemptive multitasking or protection. Howeveused abstract objects with multi-
ple implementations to provide disciplined flexibility and treated-deéned modules
the same way as the system-defined modules. The system was implemented in BCPL - a

typeless language.

Two procedures calleichLoad andcut Load were provided to save and restore the
operating system state to the diskioTadditional procedures callgdnt a andCount er -
Junt a were used to replace and restore operating system modules with an ap@ication’
customized modules. These two procedures used the contexts saveddypdldecut -
Load procedures. The system wagamized into several levels of services and the layout
in the memory corresponded to those levels such that the most ubiquitous service was at
one end of the physical memory and the least ubiquitous ones at the other end. The num-
ber corresponding to the highest level to be retained was used gsiiaeiatr byaunt a to

selectively replace all levels above that corresponding to the number

This system provided separation of client concerns and procedural control but with-
out protection. Incrementality was supported within the limits of a primitive logical and
physical oganization of the replaceable modules. The issue of scope-control was limited
to saving and restoring an applicat®®nvironment to and from disk. As in the case of
Hydra, the Alto single-user system was also implemented directly on hardware and hence
the implementds concerns and mechanisms were at a much lower level than those pro-

posed in this document.
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3.3.3Mach Family

The Mach microkernel [Rashid, 91] is designed to run operating systems-at user
level, running on top of the microkernel. The emphasis is on cheajtaskecommunica-
tion and implementation of traditional kernel services in one or more sereeascdm-

plish this, Mach provides the following key abstractions [Loepere, 92]:

e Task: A unit of resource allocation that encapsulates an address space and port

rights. Unlike a Unix process, a task is not a unit of scheduling.

» Thread: A unit of CPU allocation which is lightweight compared to a Unix process.

Multiple threads can coexist in a task.

* Port: A communication end-point which is accessible through send and receive
capabilities. Ports are useful in the implementation of object-based services
accessed through message passing. Sharing of resources such as memory objects,

can be accomplished by sharing port rights.

» Message: A typed collection of data objects. Exchanging messages is the primary

method of cooperation between multiple tasks.

* Memory object: A unit of memory management recognized by the microkernel.

Memory objects encapsulate virtual memory functionality

Many traditional operating system services such as the communication subsystem
and the file system have been moved from the kernel-level to théeuskand imple-
mented as one or more servers. Single-server [Golub, 89] and multi-server [Julin, 91]
implementations of operating system services have been constructed on top of the micro-

kernel.

One example of a crucial service implemented at thelegekis the external pager
[Young, 89]. It exports virtual memory services that are traditionally hidden inside the ker-

nel. Hence, it enables a udevel operating system to implement its own paging policy
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and backing store through an entity calledemory manager. It provides three interfaces

to achieve these features:
* a mapping interface for a client to map memory objects into its address space,;

* a memory object interface used by the microkernel for upcalls to thdeusér

memory manager; and

* a memory cache interface to allow the tis®el memory manager to manipulate

the main memory cache.

These three interfaces have proved very useful in extending the virtual memory ser-
vices. For example, theetMemoryServer is a usefevel task which allows sharing of
memory objects over the network. NetMemormoryServer is notified by the kernel when
there is a page fault and it retrieves the required page from a remote machine, if necessary

[Forin, 89].

The IBM Microkernel Services further enhance the flexibility of configurations sup-
ported by the Mach microkernel [Golub, 93]. They allow multiple operating systems to
coexist on top of the microkernel and include object-oriented frameworks for device driv-
ers and generic services like loading, naming and default paging [Bahrs, 94]. They also
further partition the services into multiple servers to allow easy replacement and configu-
ration of the service providers. A simplified conceptual view of a resulting system is
shown in Figure 3.1. The main contribution of the IBM Microkernel Services design lies
in extending modularization of operating system components and providing object frame-
works for the components to interoperate. The design allows mix-and-match combinations

of system software components.

The separation of functionality in separate units Mach and its descendants is defined
by the distinction between the microkernel and a-lesesl task. As such, it does not

directly provide for separation of client concerns. Incrementality is pegged at the coarse
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Figure 3.4: Microkernel Approach and Multiple Servers

granularity of a task. Scope control facilities are limited to certain predefined abstractions
like memory objects. Howevedue to the emphasis on IPC and separate protection
domains for operating system services, Mach and systems derived from Mach would form

an excellent platform for further experimentation in flexibility

3.3.4 x-kern€

x-kernel is an operating system designed at the University of Arizona for implemen-
tation of eficient communication protocols [Hutchinson, 91]. The flexibility approach
used in x-kernel is derived from and oriented towards communication subsystems. While
many operating systems focus on a single protocol like RPC for communicakiemel
focuses on allowing the construction of arbitrary communication protocols. Instead of
using a layered structure which is found in many communication subsystéersel
relies on three primitive communication objegisotocols, sessions andobjects. It also
provides a symmetric call mechanism between the kernel and thlewvseisystem call

for userlevel to access kernel modules and upcall in the opposite direction [Peterson, 90].
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In addition to an elegant architecture for protocol compositiekernel has pro-
vided substantial performance gains over the normal Unix implementations. It has essen-
tially demonstrated, at least in communication protocols, that performance and flexibility
are not opposite but can in fact be mutually reinforcing. It provides excellent incremental-
ity in its communication protocol architecture. Howewbe same does not hold for file
systems and other subsystems. Also, scope control has not been a focuskertied

architecture.

3.3.5 Spring

Spring is a distributed operating system recently developed at Sun Microsystems
Laboratories. Like Mach, it uses a microkernel structure and object-oriented components
with strongly typed interfaces [Hamilton, 93a]. These component®dules are treated
as substitutable parts and are assigned dynamically to address spacedooaias
Modules are composed of objects which may support-dasrain calls. Intedomain
calls use an IPC mechanism caltémbrs. The implementation of doors thoroughly opti-
mizes IPC and combines scheduling of the called thread with the transfguofesuts

from one domain to another for better performance.

In its virtual memory subsystem, Spring goes beyond Mach by separating memory
objects, objects that encapsulate access rights, from-pbjgets, objects that support
paging operations for fetching the contents of a memory object. This separation has
allowed the combination of file system services with virtual memory services ifi-an ef

cient but flexible way

An interesting and particularly relevant innovation introduced by Spring is the idea
of subcontracts for object invocations [Hamilton, 93b]. Since object invocations are fun-
damental to a Spring implementation, the architecture allows substitution of communica-

tion mechanisms on both client and server sides. The substitutable entity is encapsulated
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into a subcontract. On the client side, it provides an interface consisting of the following

operations:

marshal to package and transmit an object to another address space;
» unmarshal to unpack an object received from another address space;
* invoke to actually execute an object call after marshalling has been done;

* invoke_preamble to write some subcontract level information into the communica-

tion bufer or to adjust the btdr otherwise to influence future marshalling; and

» marshal_copy for copying guments that are passed with copy semantics.

The serveside interface provides operations that support instantiation of Spring
objects, processing of incoming calls and reclaiming a Spring object by revoking the
rights to that object held by clients. Thus, subcontracts focus on separating communica-

tion mechanisms from the task of implementing Spring objects.

Many of the comments in the last paragraph about Mach also apply to Spring due to
its emphasis on the microkernel approach. Howesdscontracts provide greater incre-
mentality to object communication than is available in Mach IPC. Scope control is again
on a peiobject basis and does not address restricting visibility of a change to one of many

clients.

3.3.6 Apertos

Apertos is a reflective operating system designed at the Sony Computer Science Lab
to provide a flexible mobile computing environmenbdk¥te, 91]. It uses metaobjects and
their hierarchies as building blocks to provide flexibili®y meta-hierarchy consists of
metaobjects and in turn, the second-level metaobjects for the first-level metaobjects and so
on. Each meta-hierarchy provides a customizable virtual machine for applications
[Yokote, 92a]. A virtual machine is callednataspace in Apertos. At the most basic level,

Apertos implements a tiny microkernel calidtaCore which is the terminal metaobject;
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i.e. it has no metaspace. The other important abstraction in Apertosfliscéor a reflec-
tor is a metaobject which represents metacomputing defined by a group of metaobjects.
Like metaobjects, reflectors are alsgamized in a hierarchy and certain reflectors are

provided by the Apertos implementation.

The logical oganization of objects and their metaspaces is shown in Figure 3.1
which has been adapted fromoRote, 92a]. The lightly shaded areas in the figure are the
first-level metaspaces while the darkly shaded areas are the next level metaspaces. Objects
whose execution is supported by a metaspace are shown astride the boundary of the
metaspace while the objects contained inside are metaobjects and constitute the
metaspace. Application objects can change the behavior of the operating system by invok-
ing operations supported by reflectors or by migrating from one metaspace to.another
Object migration is particularly critical for the heterogeneous mobile computing environ-
ment that Apertos has tsted. Hence, mechanisms are provided for checking compatibil-
ity between metaspaces. Furth&pertos also provides kernel transactions and support for
real-time applications by limiting the MetaCore to operations whose execution time is pre-

dictable [Yokote, 92b].

Apertos is a pioneer in applying reflection to operating systems. It separates client-
controllable aspects from the rest of the implementation using metahierarchies which also
provide incrementalityScope-control is againfetted on a peobject basis and there is
no special mechanism for pelient scope control. Like Mach and Spring, it is imple-
mented directly on top of hardware; the approach is revolutionary rather than evolution-

ary.

3.4 Summary and Remaining I ssues

Research in languages like CLOS and 3-KRS has clearly shown the value of reflec-

tive architectures for flexibility by allowing clients to participate in implementation deci-
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sions in a disciplined mannérhe architectures have used concise self-representation and
causal connection to allow a client to choose a custom language from a broad spectrum.
For example, as described in the subsection on CLOS, the order in which classes are
searched can be redefined by a client. Both CLOS and 3-KRS are functional languages
and their implementations have extensive run-time support from the interpretive environ-
ments. On the other hand, the problems encountered by sinfilds & C++, an impera-

tive and compilation-oriented language, illustrate thécdity posed by the lack of a

good self-representation and run-time support. The loss of information during compilation
further complicates the task of constructing a self-representation. Also, the performance
expectations of programmers using a language like C++ often doom flexible but expen-
sive features. These lessons are critical for the design of our approach to operating sys-
tems. The Pi approach relies on the basic reflective model of 3-KRS and dual interfaces in

CLOS while providing a few &tient mechanisms for self-representation.

Early operating system fefts indicate the value of policy/mechanism separation

and customization. Howeveunlike Hydra and Alto-OS, we are not designing a kernel

39



from scratch but are interested in an evolutionary approach for existing operating systems.
Also, due to the emphasis on distributed systems and legacy constraints imposed by
resources used, the issues have changed substantially since tbdseirethe 1970s.
Alto-OS in particulardoes not address the issue of multiple simultaneous clients and pro-

tection; issues that are considered important in this work.

More recent dorts like Mach and Spring have concentrated on partitioning of func-
tionality across protection domains. Hence they have emphasized optimization -of inter
domain communication and construction of operating systems at thé&ewuslerWhile
partitioning is valuable and fast communication mechanisms are essential for partitioning,
they do not by themselves address the issue of incrementality which is a critical aspect of
flexibility. For example, as pointed out in [Kiczales, 93], Mach allows the replacement of
a whole pager or a file system at uesel but does not address how a file system or a
pager can be modified to suit an applicasameed. Also, these systems address the issue
of scope control only to a limited degree. They do not solve the probleniesedifclient

scopes.

On the other hand, ourfeft is more focused on the semantics of operating system
services and the need for incrementality and scope control. In that sense, our approach is
orthogonal to that of a system like Mach and hence can in fact be considered the logical
step after achieving the partitioning proposed by Maah ceh also benefit from the tech-
nologies like fast IPC, produced by these systems. In the same veir;kigael, we
emphasize the semantics of operating system services but xHkkkael, address scope
control and do not propose a new kerned ®We much tx-kernel for their insights into

decomposition of communication subsystem into a set of flexible abstractions.

Apertos has pioneered the idea of reflection is operating systems. Unlike Apertos,
we do not provide a metaspace and reflectors for every object and instead focus on key

mapping decisions made by operating system designerged\that while the meta-hier-
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archies can enable extreme flexibilithey do not by themselves capture the behavioral
aspect of services provided by operating systems. They may also entail significant over-
head in absence of extensive programming environment support which is unavailable in
existing operating systems. Also, as mentioned above, we are interested in adding flexibil-
ity rather than building a new kernel from scratch. Moreover we believe that scope control
problem is important enough to merit explicit facilities. In summigug choice of an evo-
lutionary approach, emphasis on capturing the decisions of operating system designers
and scope control are the main distinguishing characteristics of our approach presented in

the next chapter
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4. Pi APPROACH

There are a number of ways to make an implementation open. In this chapter we will
start with two of the more obvious options, and then refine them to obtain what we call the
Pi approach. We will use distributed shared objects as an example to illustrate the key
aspects of the approach. This description is followed by a discussion of the programming
model consisting of guidelines for implementors and client developers. Fiwallwill

discuss some of the implementation issues that arise while applying the Pi approach.

There are two obvious approaches to obtain flexible implementations. One based on
existing implementations and the other on metaobjects. The former provides a starting
point for adding flexibility to well-established and optimized implementations while the
latter capitalizes on programming tools that can automate behavioral change at object

granularity

Existing subsystem implementations have a number of unexposed parameters that
affect their behaviorAn example is the number of preallocatedfénsf on the receiver
side of a communication channel. Preallocating moréelsiin a communication sub-
system would improve latency by saving the time required to allocate additiofexkbuf
On the other hand, increasing the number of preallocatéerbdiér receiving lage mes-
sages could lead to reducedfeukpace for senders who may have to be blocked. Another
example is the delay between successive flushing of fiferbutVhile reducing the delay
in a file system would increase the crash-resilience by decreasing the duration for which

data is volatile, it would reduce the overall throughput of the file system. Thus, it may be
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desirable to determine the values of parameters such as these at run-time, according to cli-

ent-needs.

These and many similar parameters can be identified by carefully examining exist-
ing implementations. A client could then select the values for them. In fact, this approach
is already used to some extenti wrt| calls provided in UNIX [Lefler, 89] and OS/2
[Deitel, 92]. However consistent with the bad reputation earnedi byt 1 calls, this
approach has several limitations. First, the approach is very unstructured; it does not
address how clients can participate in crucial, non-parametric decisions that substantially
alter the implementation. For example, in a scheduler implementation, the time-slice
parameter could be exposed and adjusted but the scheduling policy cannot be changed.
Second, the approach is not disciplined; a change in a certain parameter caffelts/e ef
on other parts of the implementation and other clients. For example, in a scheduler imple-
mentation, a long-time slice may be undesirable if there are many processes waiting in the
scheduler queue. Hence, we will have to look beyond exposing parameters in existing

implementations.

Building a system out of objects augmented by suitable metaobjects is the second
solution. Programming tools like SOM [IBM, 93a] and Open C++ [Chiba, 93] provide
varying degrees of support to generate metaobjects that can provide run-time control over
structure and behavior of an object. Structural control includes obtaining type-information

while behavioral control includes altering function dispatch.

In principle, a system composed of objects and their metaobjects is very flexible. In
such a system, it is possible to achieve two desirable aspects of disciplined flexibility dis-
cussed in Chapter 2; metaobjects allow incremental changes, and, with additional scaf-
folding, may permit scope-control. The combination of known object-oriented subsystem
designs and tool-generated metaobjects provides a bewildering range of control. But

therein lies the drawback of this approach. Extensive control over individual implementa-
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tion objects is dffcult to translate into client participation in choosing options tHataf

the behavior of the overall subsystem. Conversflgices that a client would like to make

are dificult to translate into metaobject calls throughout the implementation. Also, a uni-
form use of metaobjects leads to substantial performance penalties while providing flexi-
bility that may not be of use. Hence, we need to look beyond a cookie-cutter approach

based on metaobjects.

The Pi approach is designed to combine some of the advantages of the two
approaches. Like the legacy implementation-based approach, we will exploit the sub-
system-specific semantics and like the metaobject approach, we will pay attention to disci-
plined use of client-control. Our approach concentrates on designers’ decisions and uses
the reflective system model discussed in the previous ch&ygewill provide run-time
representation for entities like an interface, that are normally only a part of the program
text and then look for ways to manipulate them. The approach consists of a reflective

architecture and a programming model that can be followed by implementors and clients.

4.1 Reflective Achitecture

Recall that a reflective system consists efl&representation, acausal connection
between the representation and the system and facilitiesefacomputation. Clients per-
form metacomputations to change the self-representation of the system and, through the

causal connection, the system itself. Accordingly we will discuss these three aspects.

4.1.1 Self-epresentation

Operating systems managgsources, like memory and locks, on behalf of applica-
tions. They respond tevents such as interrupts, traps and system calls. They provide
interfaces for clients and for internal use, and perform certain sequences of steps, which

we call protocols, involving resources, in response to events. Many of the resources,
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events and interfaces are inaccessible to clienéscaM use this simplistic description to

guide us through the development of a self-representation.

4.1.1.1 Resources

Resources can be encapsulatetesmirce objects. A resource object is an instance

of aresource class and provides an interface to a resource at appropriate granufarity
example, a memory object encapsulates a portion of main memory possibly consisting of
one or more pages, and provides operations for allocation, deallocation, reading and writ-
ing [Loepere, 92]. This simple view of a memory object containing three pages is depicted
in Figure 4.1. The object as viewed by a client is shown as a rectangular box drawn in
dashed lines, with calls in its interface marked by arrows. The supporting implementation,
a resource object, is shown as a circle hidden behind the interface. Page boundaries, which

are omitted in subsequent figures, are marked by dotted lines.

r — "1

al | oc/ deal | oc i |
i | |

read/ wite |_ J

Figure4.1: Memory Object

Resource objects may encapsulate non-hardware resources as well. A lock for
ensuring mutual exclusion is significant not for the underlying storage occupied by a
semaphore but for its functionality of avoiding conflicts between readers and writers or
multiple writers. Resource objects can be grouped together to provide a composite
resource object. For example, a lock can be associated with a memory object to make it

available for concurrent usage by multiple processes as shown in Figure 4.2.

The implementation of a resource object may be fairly complex, in which case, it is

desirable to reuse the implementation. Consider a persistent object as shown in Figure 4.3.
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Figure 4.2: Resource Object for Locking

To support the callslikestore() andretri eve(), apersistence manager implementation
has to provide a disk storage implementation. Such a persistent object would have afairly
complex implementation to take care of allocation of disk blocks, garbage collection,
ensuring high throughput, etc. Hence, it is undesirable to expect a client to provide its own
implementation. However, encapsulation ensures that, if necessary, the implementation
can be changed. Thus resource objects form the basic building blocks of a subsystem; they

will be typically reused and occasionally replaced.

storel/retrieve

Figure 4.3: Resource Object for Persistence

The implementation of a resource object may span multiple machines. Consider
converting the ssmple memory object of Figure 4.1 into a distributed shared object (DSO)
asin Figure 4.4 [Kulkarni, 93]. A DSO would be shared by multiple processes, possibly
running on different machines. A coherency controller object could be used to ensure that

processes on different machines which have different physical copies of the DSO have the
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same logical copyFor example, a process on machine M1 has a separate physical copy of

a DSO that it shares with a process on another machine @éfl2h¥ coherency controller

must ensure that both the processes see the same data. Such a coherency controller object
would then decide which is the latest copy and provide the most up-to-date contents upon
request. ypically, the coherency controller would have at least some part of its implemen-
tation on each of the participating machines. While the parts femetit machines may be
independent in terms of failure, installation and administration, they still collaborate to
present a single resource object. Thus a self-representation for a subsystem may span mul-

tiple machines.

M1

al |l oc/deal l oc

read/write'!_ |
refresh/ update

Figure 4.4: Resource Object for Coherency

The memory object embellished with additional functionality of locking, persistence
and coherency is shown in Figure 4.5. In this final form, it could be supported by a mono-
lithic subsystem, or it could be a composite of separately controllable resource objects.
Such a decomposition will be discussed in the context of DSOs later in this chapter and in
the context of file systems in the next chaptéwus, the identification of the separate con-

stituent resource objects is the first step in the development of a self-representation.

We will use the DSO example to explain the other aspects of a self-representation

and the Pi approach. The rich set of functionality shown in Figure 4.5 rests on a number of
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Figure4.5: DSO Subsystem

design decisions which will be opened for client control as we develop our approach.

After resources, events is the next important item in self-representation.

4.1.1.2 Events

The internals of an operating system reveal a second key aspect - events. Operating
systems handle a number of events created by hardware and by applications. On the hard-
ware side, they handle interrupts from devices like timers, network cards and disk control-
lers; on the application side, they handle system calls for memory allocation, signals and

inter-process communication.

Applications are often shielded from events. For example, in a typical implementa-
tion of distributed shared objects, page fault events are not visible to a client. A page fault
is generated by a client process when it accesses a page belonging to a memory object, but
the page is not mapped in the process’ address space. Hpiveway be the processing
of such events that a client would like to alfEnus, some critical events may have to be
included in the self representation. The occurrence of an event leads to an invocation of an
operation supported by a resource object which is documented in the resourcs object’

interface.
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4.1.1.3 Interfaces

As mentioned earlieresource objects hawveterfaces. These interfaces define the
signatures for operations supported by the resource object. Signatures document the name
of the operation, the types for thegaments taken by an operation, and the type for the
return value of the operation. A signature for the lock operation supported by a lock object
associated with a memory object could be

int lock (int process_id, int read or_wite_node);
Thus, the signature tells us that an operation namedtakes two integers asguments

and returns an integer

Interfaces export a set of operations and hide the implementation details. Thus, it is
possible to have multiple implementations for a given interface. But all the implementa-
tions mustconform with the interface; otherwise changing the implementation would
affect the clients of the interface. Conformity has two aspsacpsature compatibility and
functionality compatibility. Signature compatibility can be checked using a tool like a
compiler while functionality compatibility must be ensured by implementors. For an
implementation of a lock object, taking two integers gsigents for théock() call and
returning an integer ensures signature compatipilityle actually ensuring mutual exclu-
sion when a write lock is successfully acquired, provides functionality compatibility
Unfortunately there is no systematic way of checking functionality compatibility and
hence it will remain implicit in our self-representation. Consequewtywill use inter-
faces in our self-representation with the understanding that implementors will ensure

functionality compatibility for each implementation option for a given interface.

The separation of interface from implementation is a good design principle [Meyer
88]. Howeveywe take it one step further by incorporating the separation in the self-repre-
sentation. This allows a client to bind tofdient implementations while using the same

interface. The separation is ensured by evolving a resource object into a pair of objects: an
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interface object which provides indirection and amplementation object which provides

the functionality In the previous discussion of resource objects, we considered an inter-
face to be a purely program-text entity with no run-time existence. But in this next step,
we are reifying the interface at run-time as an interface object as shown in Figure 4.6. The
figure shows a resource object, depicted as a circle, and its decompositioniintes-an

face object is shown as a rectangle amaplementation object, as a rounded rectangle.

Figure 4.6: Interface and I mplementation Objects

A subsystem is composed of a number of resource objects. A default implementation
object is provided for each resource object. But the implementation object associated with
the interface object can be changed at run-time. Clients can userardifmplementation
object if the default implementation does not meet their needs. Such a change would result
in the interface object redirecting service requests to the new implementation object. Thus,
an interface object allows a client to control the processing of events that are normally

processed by the subsystem-supplied, default implementation object.

Invocations on the interface object can be intercepted and redirected to other
objects. In dect, a diferent implementation can be interposed between the client and the
original implementation. This allows the addition of pre- or post-processing code for one
or more operations documented in the interface. A number of the possible changes to the
implementation structure are shown in Figure 4.7. An invocation can be redirected,

another object can be notified of an invocation, or invocations can be intercepted through
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interposition. The shaded rounded rectangles depict the implementation objects used for

the changes.

(a) Redirection (b) Notification (c) Interposition

Figure 4.7: Modification of Event Handling through Interface Objects

Consider the distributed shared object example. The coherency controller exports
two operations fefresh() andupdate(). A call torefresh() ensures that the latest
version is obtained while a call tpdat e() ensures that the current version is declared
the latest version. For simplicjtgssume that the signatures are:

int refresh();

i nt update();
It is possible to have multiple implementations that support this interface. Upon invoca-
tion of updat e() on machine M1, an implementation on M1 could either send out invali-
dation notices declaring all other copies of the DSO stale or it could ship the latest copy to
all sharing sites. The choice depends on factors like how often e is called and how
often the latest copy is required elsewheréhW flexible implementation, a client could
instruct the coherency controller interface object at run-time as to which implementation

to use.

Resources, events and interfaces seem to provide a good handle on the self-repre-
sentation of a subsystem. Resource objects encapsulate reusable code that a client-sup-

plied implementation can selectively use. Exposing events allows a client to change the
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processing inside a subsystem and interfaces provide some amount of safety and structure
for using aternative implementations. However, we need to take afurther step to bring the
controllable aspects closer to the design decisions. The notion of protocolswill help us do

that.

4.1.1.4 Protocols

Consider the case of a client that wants to share an object with a process on another
machine as shown in Figure 4.8. The client calls share() which leads to the following
sequence of events. The resource object handling the call invokesr ef r esh() on the local
coherency controller to ensure that the local copy is up to date; then, register() is
invoked on the remote DSO subsystem to provide a copy of the object to the remote pro-
cess. While all three functions are documented in one interface or another, the sequence of

invocations performed as aresult of ashar e() call isnot represented anywhere.

Figure 4.8: Incoming and Outgoing Invocationsin a Protocol

An interface provides a static description of the associated implementation. A proto-
col, on the other hand, describes sequences of invocations. A sequence includes invoca-
tions on the interface that the protocol supports and the resulting invocations on the
interfaces of other protocols and resource objects that the protocol uses'. Thus, protocols

implicitly capture the states of the interacting objects. In addition to encapsulating a

1. Our use of the term protocol is similar to that in communication protocols [Holzmann, 91]. It
is markedly different from that in CLOS or Smalltalk wherein a protocol is similar to our interface.
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sequence of invocations, the protocol for sharing also specifies the participating objects in
its informal description: the coherency controller on the machine where the operation is
invoked and the DSO subsystem on the remote machine. Thus protocols also bridge multi-

ple components through their invocations.

More importantly protocols represent key decisions made by a desigrnée DSO
example, consider the protocol used for providing access to a page in the DSO. When a
process on machine M1 accesses a location in the memory object, a page fault is generated
if the corresponding page is not available in a valid state on that machine. The page may
either be absent oif present, the data contained may be suspect due to concurrent writes
to the corresponding logical page on other machines. In response to the page fault, a DSO

implementation may do one or more of the following:

* Request access to the latest copy of the page by sending a message to another
machine M2 or by sending a broadcast if the machine owning the latest copy cannot

be easily determined.

* Request a shared or exclusive lock depending on the access. An exclusive lock may
be requested even for a read access if write accesses are likely to occur in near

future.

» Prefetch adjacent pages in anticipation of accesses in the near future or even fetch

the entire DSO.

Clearly, this sketch of possible page-fault protocols shows multiple choices that may
be important tesome clients. et, all these protocols are providing the same basic service
to their clients: handling a page fault; i.e. they support the same interface for clients. This
interface is called thprotocol interface. On the other hand, one can envisage distireet
tocol implementations behind the same interface corresponding to each of these choices.

We will represent dferent protocols as distinct implementation objects. A client should
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be able to select one at run-time and perhaps even provide a new one if none of the exist-

ing ones is suitabl€ontracts are used in the Pi approach to provide this facility

4.1.1.5 Contracts

The concept of contracts is a key to the Pi approach. Contracts combine separation
of interface from implementation with protocol implementations. As mentioned before,
interface objects allow a client to change the implementation and a protocol implementa-
tion is what a client would like to be able to select or change. Thus, a contract object is an
evolution of a resource object; not only does it have a well-defined interface but that inter-
face is reified as an interface objece Will now look at the classes that define a contract

and the instances of those classes.

A contract has a name and supports an interface. Its run-time instances are called
contract objects. A contract object consists of an interface object, callecheam inter-
face object or CIO, and an implementation object calledoatract protocol object or
CPO. Since the interface and implementation objects in a contract are separate, the CPO
can be changed. The leftmost circle in Figure 4.9 shows a contract object C1, with two
possible implementations. The CIO is shown as ashaped figure and the two alternate
CPOs as rounded rectangles. Howgaazontract object can have only one CPO at a time

and hence one of the CPOs is shown in dotted lines.

o A=)«
\ " L@
(rer)

Figure 4.9: Contractsand Protocol | mplementations
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A CPO implements a protocol using resource objects and other contract objects. As
shown in the figure, the protocols implemented by two CPOs mayfbeedif The CPO
drawn with a dotted line calls resource object RO1, while the other CPO calls resource
object RO2. But multiple protocol implementations may reuse the same object. The two

CPOs in the figure, both invoke functions supported by the same contract object C2.

Now let us turn our attention from objects to classes and the interfaces of the
classes. It is convenient to visualize a ClO as an instanceoofract interface class Cl,
and CPO as an instance otantract protocol class CR While classes and inheritance
hierarchies are not essential for the self-representation, they are convenient for implemen-

tation and useful for exposition.

A class has an interface and all the instances of the class support that interface.
There are two interesting parts of the interface of a Cl class corresponding to the basic
idea of dual interfaces. The first part, called the functionality interface, lists calls sup-
ported by a CPO and the second part called the control interface, allows a client to change
the implementation object, i.e. the CPO. A CI gets the two parts of its interface from two
distinct classes as shown in Figurel4.The protocol interface class provides the func-
tionality interface while the metacontract class provides the control interface. The inter-
face of the CI class is a composition of the two interfaces. The figure shows a protocol
interface class with two calls for the page fault protocol discussed in the preceding sec-
tion: handl e_page_faul t() andpin_page(). The two calls associated with the meta-
contract class,query inpl () and set inpl() allow a client to check which

implementation is used for the CPO and to switch implementations.

Now let us take the figure one step further to include the classes for CEGawV
in Figure 4.9 that two CPOs may implement twdeilént protocols. The dérent proto-
col implementations can be easilyfeeted if we have diérent contract protocol (CP)

classes. Figure 411shows two CP classes. Both inherit from the same base class - Proto-
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handl e_page_faul t ()
Protocol pi n_page()
Interface

— |nheritance

M etacontract
Contract
Interface

Figure 4.10: Composition of a Contract Interface Class

col Interface. Hence, both support the same protocol interface. But since their implemen-

tations are different, their instances in Figure 4.9 implement different protocols.

query_i npl ()
set _impl () Protocol
M etacontract
Contract
Interface
Contract
Protocol - 1

— |nheritance
Figure4.11: Inheritance and Delegation in Contracts

handl e_page_faul t ()
pi n_page()

Contract
Protocol - 2

—— Delegation

There are two kinds of relationships portrayed in Figure 4.11: inheritance and dele-
gation [Lieberman, 86]. The inheritance relationship is between classes and delegation
between objects or instance of those classes. A Contract Interface (Cl) class inherits from
a Protocol Interface class while an instance of a Cl class delegates to an instance of a Con-
tract Protocol class. Inheritance relationships cannot be manipulated at run-time and hence
aClO, aninstance of aCl class, delegatesto a CPO, an instance of a CP class. The delega-
tion can be readily changed at run-time. The change is effected in response to a

set _inpl () request from a client. The top two classes in the hierarchy are abstract
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classes; i.e. they are not directly used for creating instance objects. The derived classes on

the other hand are concrete classes that have corresponding instances at run-time.

With this information about the contract class hierarchy in mind, we can revisit the
issue of identifying a contract. If a client wants to change the protocol implementation
used by the subsystem to service client requests, there has to be a way of identifying the
contract and the implementatiorGontract descriptors allow us to do that. A contract
descriptor consists of two parts: a name for the contract, which identifies a CI class, and an
id for the protocol implementation which identifies a CP class. For example, a descriptor
for a page fault contract could identify the page fault Cl class and a page fault CP class
that prefetches all the pages in a DSO. The descriptor can be used by a client to refer to a
contract and a specific implementation for the protocol in that contract. A client can sup-
ply a contract descriptor to a subsystem and have the subsystem create the correct CIO and
CPO. The descriptor may also be used to replace a CPO at run-timiecin afclient

selects the implementation it wants.

Implementation selection has to be constrained to enforce some discipline. A CI
class maintains compatibility information for deciding which options for CP are permissi-
ble and when. In certain cases and in certain states during execution, an existing CPO may
not be replaced by another CPO, if the replacement endangers the integrity of the overall
contract. For example, in the DSO object, a page-fault contract may not be replaced once
DSO implementations on @i#rent machines have agreed to a certain coherency protocol

for a DSO.

4.1.1.6 Subsystem as a Composition

So far we have looked at the components of a subsysterdafihed contracts in
order to allow a client to participate in some of the decisions made by an implementor
Now we can look at how a subsystem is composed of resource objects, some of which are

contract objects.
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A run-time view of a subsystem composed of multiple contract objects is shown in Figure
4.12. The two interfaces to the subsystem are discussed in Section 4.1.3. The overall functionality
of the subsystem is provided by a set of collaborating contract objects as shown in the figure. As
before, ClIOs are shown as thaped structures to emphasize dual interfaces, CPOs as rounded
rectangles and resource objects as circles. The arrows indicate potential operation invocations at
run-time. Since the figure shows a snapshot, only one CPO is shown for each contract object. As
shown in the figure, a CPO interacts with another CPO offerelift contract through a CIO for

that contract.

C1

C3

Client >

First Interface

Second Interface Subsystem

A

Figure 4.12: Schematic of a Subsystem with Contract and Resour ce Objects

Together these contratiand resource objects define the subsystem as a graph of objects.
Alternatively the subsystem can be viewed asamework of contracts and resource objects.

Each contract has a well-defined interface, and a well-defined position in the framework. Multiple

2. The term contract was introduced in [Helm, 90] for specifying behavioral compositions of interacting
objects. Helm et. al. use contracts written in a specification language to describe behavioral dependencies beyond
inheritance. The contracts in our approach are similar to Helomtracts in that they specify interaction between
objects that are not necessarily related through an inheritance hieButhye provide explicit separation
between interface and implementation and reify the interface as ClO to make contracts suitable for self-represen-
tation. There is another &#fence, perhaps the most important one, that has to do with the way contracts provide
causal connection when coupled with scopes. Although there are sevierahd#s in goals and structure, Pi
contracts were inspired by the discussion in [Helm, 90].
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implementations of CPOs that conform to the corresponding CIO interfaces, fit into the
framework. The framework of contract objects has an interesting dynamic property
caller contract object needs to either find an existing callee contract object or construct a
new one. In Figure 4.121 must find or constru¢t2 andC3. Construction of a new con-

tract object opens several opportunities for flexibil&ycontract object with a specific

CPO can be constructed, or even the graph of the subsystem can be altered. For example,
it is conceivable that some CPO for contract objgkimay not need a contract object in

place ofC3. The CPO may itself provide the functionality of two contract obj&tsnd

C3. Thus, the decomposition of a subsystem into contracts is not rigid and makes several

implementation options available.

Since a contract descriptor uniquely identifies both a contract interface and a proto-
col implementation, a list of contract descriptors describes a part or whole of the sub-
system. A list of all default contract descriptors would describe the entire subsystem while
a shorter list containing descriptors for contracts that have been changed could describe
the deviation from default implementation. This completes the discussion of self-represen-

tation in the Pi approach.

4.1.2 Causal connection

Recall that a self-representation is useful for reflection only if it determines the
behavior of the subsystem it represents. Also, as discussed in Chapter 2, it is extremely
important to ensure that any changes made to a subsystem are visible within a restricted

scope. V& will use scope control to ensure these two requirements.

4.1.2.1 Scopes

A simple example of scope control is when a client process wants a charnfgetto af
only itself. The client process is tkeope for that change. Likewise a client may want to

change the memory allocator for alldarDSOs. Then the set of allder DSOs is the
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scope for that change. Notice that there are two kinds of scopes: those related to clients
and those related to the units in the subsystenhieAt scopeis a set of entities that want

to see a change whileuait scope is a set of entities in the subsystem that dectgfd by

the change. These scopes, viewed as sets, are abstract entities. The Pi approach provides a
run-time representation for them within a subsystem as objects. Henceforth, we will refer

to the run-time representation of the abstract entity as scope.

The Pi approach relies on two properties of scopes shown in Figure 4.13. First,
scopes are instances sbpe types; and second, scope types are required toested.
Processis a scope type while a specific client process Reagess 1) is an instance of that
scope type. LikewiseDSO is a scope type while a specific DSO is an instance of that
scope type. The relationship between scopes and scope types is similar to that between an
object and its class. The former (scopes and objects) implement a running system while

the latter (scope types and classes) are a part of the design of a flexible system.

Scope types are required to be nested. For example, an application consists of one or
more processes. Hence, the scope Brpeess is nested inside the scope tyjgaplication.
In the Pi approach, this nesting property defines the rules for visibility of a change made
by a client. If a client requests that a change be made visible within the scope of an appli-
cation, then the subsystem makes sure that the change is seen by all processes belonging to
that application. W will see a diierent example of scope types and scopes in the next

chapter

A client can apply a change to a scope. In order to do so, scopes must be identifi-

able. Like contracts, scopes have descriptors for identification.

In the previous section we saw that a change is made by a client through the mecha-
nism of contracts. A client canfett a change by requesting afelient contract protocol

object (CPO) from the default one. Now if the scope of that change is to be controlled, we
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Figure 4.13: Scope Types and Scopes

must associate contracts with scopeg. ¥8e contract descriptors lists which were dis-
cussed in the last section, for this purpose. A scope has a list of zero or more contract

descriptors associated with it.

Figure 4.14 shows the scopes from the previous figure with the associated contract
lists. The contract lists are shown as slotted rectangles with varying number of slots. The
figure also shows the outermost unit scope nammedSubsystem which represents the
entire subsystem. It has a contract descriptor list mebiedalilt CD List which contains
descriptors for default implementations for all the contracts in the subsystpially,
functionality for an abstraction like a DSO is implemented by multiple contracts, and the
default implementations for all the necessary contracts are described by such a list. Other
scopes have possibly shorter or even empty lists that only contain descriptors for modified
contract implementations. These lists come into existence because a client requests that a
non-default CPO be used for a certain contract and that the change be applied to a specific
scope. Both the contract and the scope are identified through their descriptors. The con-

tract descriptors are used in scope-based dispatch which enforces scope-control.
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Figure 4.14: Scopes and Contract Descriptor Lists

4.1.2.2 Scope-Based Dispatch

Let us consider a DSO constructed for a specific client. The relevant scop&®are
1 representing the DSO aRdocess 1 representing the client process. SiB& 1 is cre-
ated at the request Bfocess 1, an arrow is shown in Figure 4.14 fra»80 1 to Process
1. Our objective is to design an algorithm that will construct contract objects that are
appropriate for a given scope. In this case, we have to construct the contract objects to
implement the functionality fdDSO 1 that satisfy the selections madeRypcess 1. Since
the selections for each scope are defined by the associated contract descriptor list, that is

our starting point.

The selection of contract objects relies on nesting of scope types. If a contract with a
certain name is not present in the associated list, a contract of the same name from the list
associated with the containing scope is used. For example, if we cannot find a descriptor
for the page fault contract DSO 1 scopes list,Large DSO scopes list is searched for an
entry corresponding to the page fault contract. There are two hierarchies, one for client
scopes and another for unit scopes. The unit scope hierarchy can always provide a descrip-

tor for any contract used in the subsystem. If none of the inner scopes have a descriptor for
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a certain contract (say page fault), the outermost sddeeSubsystem, will provide the
descriptor corresponding to the default implementation of that contract. On the other hand,
the client hierarchy may not provide a descripkorthe figure, if no client has requested

any change in the page-fault contract, the search through the client scope hierarchy will

not produce a descriptor for page fault contract.

After searching the two scope hierarchies, a CIO is constructed with the descrip-
tor(s) as agument(s). If there is no client side descriptbe CIO constructs a CPO corre-
sponding to the unit-side contract descriptbtwo descriptors are found, then the CIO
decides which of the two descriptors should be used for constructing the CPO. If possible,
the client-side descriptor is used. Howewbe client-side descriptor may not describe a
valid choice for a CPO. For example, if a client asks for a CPO for the page-fault contract
that relies on broadcasts in an interconnection that does not support broadcasts, the client-
request cannot be granted. In this case, the unit-side descriptor prevails and a correspond-
ing CPO is constructed. Internalithe CIO maintains information to decide whether a

descriptor indicates a valid choice or not.

Thus, the specific set of steps followed for constructing a contract objéz8ibt

is as follows:

1. The contract lists associated with unit scopes are searched starting from the inner-
most scope SO 1) to the outermost scopdhe Subsystem), until a contract
descriptor with the required contract name is found. A contract descriptor is always
found by the end of the search.

2. A contract descriptor is obtained, if one exists, for the client s¢pegss 1) using
a similar search in the client hierarchy

3. The descriptor(s) found in the first two steps are used to construct a contract object.
First a CIO is constructed, which in turn, creates a CPO, thus completing the con-
struction of the contract object.

We call this process of deciding and constructing the contract object to be used,

scope-based dispatch. It is used every time a contract object is created.
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Scope-based dispatch implememdltimethods for object construction [Kiczales,
91]. While in an object oriented language like C++, the function dispatched is determined
exclusively by the tagyet of an invocation, multimethods allow the selection of a function
based on additional information. Here, multimethods are implemented for selecting an
appropriate CPO constructdrhe additional information is provided by client scopes and

is determined in step 2 above.

Further even after a contract object has been constructed, the client represented by
Process 1 can request a change in the CPO. The CIO handles such requests and changes

the CPO if appropriate as discussed in the previous section.

Scope-based dispatch ensures the two critical constraints mentioned at the begin-
ning of this subsection. It maintains a causal link by guaranteeing that the contract associ-
ated with a scope in the self-representation gets used at run-time and it ensures that
changes are confined within a scope by using the scope-containment relationship for
deciding which contract to use. Of course, it allows clients to change the self-representa-

tion through metacomputation.

4.1.3 M etacomputation

Metacomputation is accomplished by invoking operations provided by the second
interface of the subsystem. There are three basic categories of operations in the second
interface. The first includes operations to set and query the contract implementations for a
scope; the second allows construction and destruction of scopes and the third, which is

optional, allows addition of new contract implementations.

A client can select a contract implementation and indicate a scope to which the new
implementation should be restricted. If the client request is accepted, the contract descrip-
tor list associated with the scope is modified accordifglyther if a contract object with

a matching name has already been creatad, npl () is invoked on the corresponding
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CIO. Subsequent computations can then use the new CPO. A CIO may refuse to honor a
client request for a change if the current state of computations makes it unsafe to change
the CPO. A special and potentially interesting case is where a CIO does not allow any
change in the implementation once the contract object has been created. This limits meta-
computation to a safer subset of changes, viz. thdeeted through scope-based dis-

patch.

New units, and therefore scopes representing those units, may be created and
deleted using explicit calls in the second interface. For example, thé.argg DSO
shown in Figure 4.13, and the corresponding scope could be created in a DSO subsystem.
When a scope is created, its outer scope and an optional contract list are specified. If a
contract list is not specified, the contracts will default to those used by the outer scope.
Scope creation and deletion may also result due to calls in the first interface. This is partic-
ularly relevant for the innermost scopes like communication endpoints and files that are
created in response to well known calls ldazket andcreat in the first interfaces of

their respective subsystems.

Finally, a subsystem may permit clients to request that new contract implementa-
tions be added to the subsystem. This is a somewhat more complicated part of metacom-
putations due to the fact that a client has to be trusted not only to provide a working
implementation but also for specifying to what extent it is compatible with other imple-

mentations.

In order to perform these metacomputations, a client may be required to have certain
privileges. For example, a subsystem in UNIX may restrict metacomputation privileges to
processes with superuser privileges. The privilege policy and its enforcement are not cov-

ered by the Pi approach and are left to the subsystem devsldseretion.
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In the Pi approach, the operations required for the second interface are deliberately
kept simple. Howevem subsystem designer can add more operations to the second inter-
face that use the basic facilities for changing contract implementations. The choice of
implementations available to a client can be packagedliases that can be selected pro-
cedurally or obtained declaratively the case of distributed shared objects, an implemen-
tation that propagates changes to a data object on demand can be packaged as an update-
on-demand policy implementation while another implementation that propagates changes
as soon as they are available can be packaged as immediate-update policy implementation.
A client of such a DSO subsystem need not know anything about the implementations

except the desired policy

Thus, there are three ways of changing the implementation. For example, consider
the memory management policy for a DSO. A client can request a specific page-fault con-
tract implementation by callinget _i npl (), select a subsystem-supported coherency pol-
icy, or simply declare that a DSO is going to be used in a particulasasapeavily write
shared. The Pi approach requires support for the first method and leaves it to subsystem

implementor to decide whether the other two methods should be supported.

Our approach avoids an infinite, or even a multi-level, tower of metaobjects that is
possible in a reflective system @\, 88]. Certain aspects of a subsystem are considered
immutable. In particularscope types and contracts are defined at design-time and are
built-in. A client may not create a new scope type, although new instances of a given
scope type may be created. Similathe approach does not recognize new types of con-

tracts although new implementations for existing contracts may be provided.

4.1.4 Summary

So far we have discussed three components of a reflective architecture designed

using the Pi approach: self-representation consisting of resource objects and contracts,
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causal connection implemented through scope-based dispatch and metacomputation

effected through a second interface. Now let us look at how the approach can be applied.

4.2 Application of the Approach

Effective application of the approach to a subsystem requires developers of the sub-
system and its clients to cooperate to ensure the integrity of the subsystem and the appro-
priate granularity for changes. The next two sections delineate the roles of subsystem and

client developers.

4.2.1 Subsystem Developers’igw

A subsystem constructed according to the Pi approach consists of a framework and a
set of implementations that fit into the framework. The following steps summarize the

application of the Pi approach to a subsystem design and implementation:

» Define the two interfaces of the subsystem: The standard subsystem functionality
should be provided through the first interface. The second interface must support
set _i npl () andquery_i npl () calls. It may support additional calls for declara-

tive control and/or loading new contract implementations (Section 4.1.3).

» Define scopes and their implementations: Hierarchies of client and unit scopes
should be defined to restrict visibility of changes (Section 4.1.2 figidaft scope-

based dispatch implementation should be supplied based on the two hierarchies.

» Define a framework of contracts: The overall functionality of the subsystem should
be decomposed into contracts. For each contract, a protocol interface and then a
contract interface should be defined (Figurd¥.Ih this key step, the extent of cli-
ent control permitted by the subsystem is determined. Once the protocol interfaces
are defined, a client cannot change them at run-time. Also, all CPO implementa-

tions are required to conform to the contract interfaces.

» Define contract protocol classes: At least a default CP class must be defined for
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each contract. CPOs are created at run-time as instances of CP classes (Figure
4.11). Each CP class makes a specific implementation decision related to the con-

tract.

» Define resource classes: Functionality used by multiple CP classes is provided as
resource classes (Section 4.1.1.1). Resource objects which are instances of resource

classes, help CPOs in providing the functionality of their contracts.

The decision about whether a certain functionality should be provided through a
resource object or a contract object can be quite trickgrinciple, any resource object
can be replaced by a contract object with the same protocol interface. But if it is not desir-
able to allow a client to change a functionality as an independent, éntffybetter to
present that functionality as a resource object. Simjlarlgrucial design decision that
affects clients, is best included in a CPO rather than a resource object. A rule of thumb is
to implementmechanisms as resource objects apdlicies as CPOs. But the distinction

between mechanisms and policies has to be made orsalmistem basis.

4.2.2 Client Developers’ \ew

There are several levels at which clients can use the subsystem. At the simplest
level, a client would use only the first interface. At this level, a flexible subsystem would
look no diferent from its conventional counterpart. If the subsystem provides for declara-
tive reflection, a client can disclose its usage pattern and let the subsystem use it as a hint

for making changes internally

A more sophisticated client would use the second interface to set the contract imple-
mentations. Such a client would need to know which of the available CPOs is most appro-
priate for its needs. The simplest way to select a protocol is to do so at the time of creating
a new unit scope such as a socket, or a fylpically, selecting a non-default implementa-

tion for the smallest scope that does not interfere with other clients or other unit scopes is
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a safe strategyHowever with additional knowledge of the CPOs, a client can attempt to

change the protocol associated with other scopes.

Finally, the most sophisticated type of clients could provide additional protocol
implementations. This level of participation is fairly demanding. The client would need to
know the contract interface, the complete semantics of the protocol that it wants to imple-
ment, and the resource objects that it is going to use to simplify the task. Also, since this
level of flexibility is optional in the Pi approach, not all subsystems designed with the
approach would support it. In fact, at this level, the client is almost on par with a sub-

system implementor

4.3 Implementation I ssues

There are several implementation issues to be considered in a flexible subsystem
and in particular in the Pi approach. These issues fall into two main categories: language
issues and operating system related issues. As mentioned in Chapter 2, we will consider C
and C++ as the implementation languages and AlX, an implementation of UNIX, as the
operating system of choice. The discussion in this section will illustrate implementation
strategies that can be used to apply the Pi approach and provide some information about
potential overheads. Further discussion of this topic based on the file system prototype

appears in Chapter 6.

4.3.1 Language | ssues

We explained contracts in Section 4.1.1.5, using the basic ideas of inheritance, dele-
gation and abstract classes. C++ provides adequate support for implementing these fea-
tures. The most important C++ feature for this purposerisal functions [Stroustrup,

91]. Virtual functions allow specialization of functions declared Ilvase class so that a
C++ compiler automatically invokes the correct version of the function based on the type

of the object supporting the function. Hence, a base class pointer can be used to point to an
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object of a derived class while ensuring that the version of the function dispatched corre-
sponds to the object that the pointer points to, rather than the type of the pointer variable.
In the case of contracts, this facility is used in conjunction with delegation to substitute

implementations.

A skeleton of C++-like pseudo-code is shown in Figure 4.15 for the class hierarchy
of Figure 4.1. The top-level classes are abstract classes; i.e. they are not used for creating
instances. The virtual functions defined in these classes are implemented in the derived
classes. Due to the virtual function mechanism, the operations invoked by the delegator on

the delegatee use the appropriate implementations provided by contract protocols.

A C implementation would have to use explicit function pointers in the absence of a
virtual function mechanism. Although less elegant and less type-safe, a vector of function
pointers can be used to invoke the functions supported by the protocol interface. The con-

tract protocol can be changed by replacing the function pointer vector

In both C++ and C, the separation between the interface and the implementation of a
contract is achieved using an indirection. This indirection has an associated cost of an
extra pointer dereferencing operation. Secondary performance penalties could also be
caused by possible cache misses. Additional costs are incurred due to the search required
for scope-based dispatch when a contract is instantiated. But typically the number of lev-
els of scope types (three in Figure 4.14) is likely to be small and hence the search overhead
is likely to be low Typically, these costs would be very small in comparison to the costs of
common codepaths in subsystem implementatiomswiV revisit this issue in Chapter 6

in the context of a file system implementation.

4.3.2 Operating System | ssues

Two important operating system issues need to be considered while using the Pi

approach: addition of code within a protection domain at run-time and cross-domain inter-
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/1 An abstract class docunenting operations in the second interface
/1 of the contract interface class
cl ass Metacontract

publi c:
/1 just provide signatures; no inplenentation
virtual int set_inmpl (Inmpl_Id) = 0;
virtual int query_ inmpl(Inpl_Id*) = 0;
1

/1 An abstract class for the interface of the page fault contract
cl ass Page_Fault_Protoco

publi c:
i nt handl e_page_fault(Page_ld) = O;
i nt pin_page(Page_Id) = 0;
/1 This is a contract interface class that provides inplenentation

/1 for metacontract operations and del egates the ot her operations
cl ass Page_Fault_Contract _Interface

public:
/1 constructors and destructors not shown
int set_inmpl(lnpl_I1d); /[l impl. in a separate cl ass
int query_inpl(Inpl_Id*); /1l inmpl. in a separate class

/] del egate the next two operations
i nt handl e_page_faul t(Page_ld id)
{del egat ee- >handl e_page fault(id);};

i nt pin_page(Page Id id) {del egatee->pin_page(id);};
private:

/1 the delegatee is a contract protocol object

Page Fault_Protocol * del egat ee;

/1l nore info. about compatibility, current state etc.

}s

/1 One inplementation of the protoco
cl ass Page_Fault Protocol 1

publi c:
/] constructors and destructors not shown
/1 the follow ng functions have concrete inpl. in this class

i nt handl e_page_faul t (Page_ld);
i nt pin_page(Page |1d);
private:
/1 inplenentation-specific information

/1 Another inplenentation of the same protoco
cl ass Page_Fault Protocol 2

publi c:
/1 constructors and destructors not shown
i nt handl e_page_fault(Page_ld);
i nt pin_page(Page_Id);
private:
/1 information specific to this inplenmentation

b

Figure 4.15: Pseudo-code for a Page-Fault Contract
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action. In the following sections, we will discuss dynamic loading, use of multiple protec-
tion domains and the overhead of cross-domain interaction. These issues are discussed in
the context of the platform used for the work described in this document: AIX 3.2.5 run-
ning on 25MHz RS/6000 model 530 machines based on the Power architecture and con-

nected by 10 Mbps ethernet.

4.3.2.1 Dynamic L oading

Like most flavors of UNIX, AIX provides facilities for dynamic loading of object
modules [Hook, 93a] [Hook, 93b]. The callsad() andi oadbi nd() can be used respec-
tively to load an object module and resolve the symbols imported by the module. Sub-
system implementations that provide the facility to add a protocol implementation to a
running system would have to use this facil&yprotocol implementation loaded at run-
time exports the functions supported by the corresponding contract interface. It imports
the functions supported by resource objects used by the protocol implementation and other

contract interfaces.

4.3.2.2 Protection Domains

Protection domains provide a number of benefits, inevitably occur in subsystem
implementations and can bdegtively accommodated in the Pi approach. Let us look at

these three issues one by one.

Subsystem implementations can greatly benefit from the use of multiple protection
domains. Partial implementations provided by clients can be used much feotealf
if the rest of the subsystem is insulated from them through the protection domains imple-
mented by the underlying operating system. Protection domains act as firewalls and
improve the robustness of the subsystem while allowing the flexibility that Pi approach

seeks to provide. Also, the development of such implementations is greatly simplified by
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the fact that they can be tested and debugged separately [IBM, 94]. In AlX, a protection

domain is either the kernel or a u$evel process with its own address space.

Apart from implementation convenience, multiple protection domains are important
because they are unavoidable. In a distributed system consisting of autonomous machine,
implementations often have to cross machine and administrative boundaries to provide
services like communication and file systems. The DSO coherency controller shown in
Figure 4.4 is one example of such an implementation. There are three basic types of cross-
domain interactions as shown in Figure 4.16: system call, upcall and RPC. RPC involves

processes that may or may not be on the same machine.

Process-1 Process-2

\JRPC
[ h [N
_/ N4

System call Upcall

Kernel

Figure 4.16: Calls Across Protection Domains

Cross-domain interactions can be accomplished thrpumties [Shapiro, 86]. As
shown in Figure 4.17, a pro in address spac&l represents a resource obj€xin
another address spad. It forwards all calls t@ and collects results on behalf of the
caller Because 0P, all invocations made 0@ look local to a caller i\1. Proxies can be
easily introduced in contracts as shown in the figure. A CPO can actually be a pair of a
proxy and a remote protocol object as shown in Figure 4.17. Proxies are shown as hatched

shapes in the figure.
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Addr. SpaceAl Addr. SpaceA2

PO @o

Figure4.17: Use of Proxiesin Contracts

4.3.2.3 Cross-Domain I nter action Costs

The opportunities discussed above entail a substantial cestiait to measure the
costs, explore alternate itdomain communication mechanisms and understand their

implications for the application of the Pi approach to a subsystem implementation.

Interaction between protection domains is several orders of magnitude slower than a
function call within a protection domainaflle 4.1 shows the average cost of cross-
domain calls in AIX. The tests measured the time for one roundtrip performed using null-
RPC from one domain to another and then back. Each measurement consisted of 10
roundtrips (1000 in case of function call) and the mean was computed over a set of 10
measurements. The first row shows the time for a minimal function call within an address
space as a reference value. The second row shows the time taken by a null system call; i.e.
the cost of crossing the udarrnel boundary both ways. System V IPC numbers are
shown in the third and sixth rows. System V IPC, which is restricted to a single machine,
can be used for IPC as well as an upcall from the kernel domain to-dons&in. The
fourth and fifth rows show the costs when sockets are used with UDP as the underlying

protocol.
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Table4.1

Costs of Cross-Domain Calls

Nature of Interaction Time inusec.

Function call 0.25
System call 22

RPC using System V messages - single machine 870
RPC using UDP sockets - single machine 1600
RPC using UDP sockets - two machines over ethernet 3100
Upcall using System V messages 700

Pi custom upcall 180

Since the cost of an upcall using System V IPC is substantial, a custom upcall pack-
age was developed for collaboration between kernel-level andewséicomponents. It
uses kernel-level facilities for minimizing the delays in scheduling the process containing
the called code and shared memory for parameter passing. The last row in the table shows
the cost of the Pi custom upcall. The details of the implementation and extensive perfor-

mance measurement can be found in [Banerji, 94a].

The numbers for cross-domain interaction costs are strongly dependent on the hard-
ware platform and the operating system. Howetler ratios of the costs of cross-domain
interaction to a function call are comparable across multiple platforms [Anderson, 91].
Hence, the relative costs are more important than the absolute numbers and should be
taken into account while implementing CPOs. Also, developing mbeogeeat implemen-
tation of cross-domain interaction primitives as in the custom upcall, is only one of the

two critical steps.

The second step is reducing the interaction between modulegeiredifprotection
domains. When the costs of calls iable 4.1 are compared with the costs of a function

call within a protection domain, it is clear that they need to be factored into the design, not
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just the implementation. Hence, contract interfaces need to be designed assuming that
some of the protocol implementations may be remote. An example of such a need will be

discussed in Section 5.3.4.9 in the context of name resolution in file systems.

Finally, there is another important implication of the high cross-domain interaction
costs. So farwe have assumed the synchronous RPC model for object invocations; the
caller waits for the callee to finish. But there exists an opportunity to reduce this wait and
exploit concurrency using a separate process (or a thread where available). In our experi-
ments with the Pi approach, we have developed a tool calledkagueue for exploiting
concurrency [Banerji, 94a]. A work queue consists of two queues; one for synchronous
calls and another for asynchronous. Both queues are shared by two or more processes run-
ning on behalf of callers and callees. The caller decides which queue to use for a particular
invocationon a per-invocation basis. The asynchronous queue can be used to improve the
throughput of the subsystem while the synchronous queue can be usegfrequests.

This choice between the two styles of invocation can be easily incorporated into CPOs to
obtain diferent performance characteristics. While the work queue tool can also be used

in conventional design, contract objectieof better granularity for its use.

4.4 Overall Perspective

The Pi approach uses the reflective model to provide flexibility in key places in a
subsystem. It encapsulates design and implementation decisions into protocol objects and
makes them substitutable through contract objects. It ¢ectig€ly utilize multiple pro-
tection domains through proxies which can be used to build contract object and resource

object implementations.

At this point, it is worthwhile to visit the five points mentioned at the end of Chapter

2. We will revisit these points in Chapter 6, after the discussion of the file system proto-

type.
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» Separation of client-control: Contracts provide the separation; framework of con-
tracts and protocol interfaces are defined by a designer while CPO implementations

are selected by a client.
* Procedural control: The second interface allows clients to select an implementation.

 Incremental modification: Contract objects provide incrementality; CPO for one or

more contracts can be changed while using default CPOs for the other contracts.

» Scope control: Scopes can be used to define the visibility of a change. Scope-based

dispatch uses client-input in selecting the implementation dispatched.

* Low overhead: Simple indirection used in contract objects and small number of

scopes in a subsystem aid in limiting the overhead.

The Pi approach makes a conscious trddedhe amount and nature of flexibility it
affords. Unlike conventional design approaches, it allows clients to change CPOs which
often define the policies used by the subsystem. In a clear departure from the metahierar-
chy approaches like Apertosdkote, 92a] that make every aspect of an implementation
subject to client control, flexibility is restricted, thereby ensuring subsystem integrity
While making this tradeff special attention was also paid to minimizing the overhead

imposed on clients that do not use flexibility features.

We have discussed the run-time changes made possible by the Pi approach in detail.
But the approach is also conducive for the more conservative, and sioopigrile-time
flexibility. In fact, wherever possible, designers should resort to compile time flexibility
features and use the run-time features only where there is no compile-time option. Con-
tracts, which can include a set of precompiled CPO implementations and allow run-time
selection from among them is one example of such a strd&egyhasis on compile-time
flexibility improves the overall performance by minimizing run-time indirections, and
enhances safety by catching type errors at compile time. It also makes a subsystem more

reliable since multiple implementation options can be tested for interoperability during
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development. Also, entities in the Pi approach that are not subject to run-time metacompu-
tation can be easily subclassed for compile-time flexibHoy example, a new scope type
which provides persistence for contract lists can be created by inheriting from an existing
scope type. Thus, the approach does not forego any of the advantages of compile time
flexibility associated with framework based object oriented approaches [Bahrs, 92]

[Campbell, 91].

Structures similar to Pi scopes have been in use in operating systems for purposes
other than changing the implementation at run-time. For example dhepr oc struc-
tures in UNIX [Lefler, 89] are used for access control, accounting and garbage collection.
However the Pi approach takes scopes one step further by using them for self-representa-
tion and controlling the implementations used. Delegation, which is used in contracts, is a
key mechanism in prototype-based languages [Agha, 87], [UBGhwhere it is often
used as a substitute for inheritance. Coplien [Coplien, 92] uses it in the envelope-letter

idiom in C++, where an envelope object forwards calls to a letter object.

In order to illustrate the use of the Pi approach, we will discuss a flexible architec-
ture for a file system. @will show how the Pi file system architecture overcomes some of
the drawbacks of an architecture that is currently used widely and how it benefits from the
basic structures like contracts and scopes proposed in the Pi appraachill \then
describe and implementation and evaluate fiscéfeness. Later we will expand on the
discussion in this subsection by drawing from the file system development experience and

addressing concerns about flexibility raised in the operating system community
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5.Pi FILE SYSTEM ARCHITECTURE

A file system is an important subsystem of an operating system. It provides access
to a variety of data sources, and serves clients witbrdiit usage patterns and varying
views of the data. Hence it is an ideal candidate for verifying and refining the Pi approach.
In this chapterwe will describe a way of making file systems flexible usingPihEile
System (PFS) Architecture which utilizes the Pi approach. But to motivate the develop-
ment of PFS, we will first discuss what we would like a flexible file system to be able to

do, and what a currently popular file system architecture provides.

5.1 Desirable Features

The following file system features have become desirable due to the increasing
importance of accessing data resources spread over a wide network, and the variety of

access methods required.

« Different APIs for accessing data offdient types.

Support for multiple, possibly autonomous namespaces.

Control over storage and retrieval of data.

Tailorable support for caching.

Support for multiple I/O protocols to obtain data from heterogeneous repositories.

Files have dierent models and corresponding APIs.f&ént operating systems
use diferent, sometimes multiple file models. UNIX uses only the byte-stream model; it
assumes that a file is a stream of bytes without any additional structure like records and

fields. Hence, UNIX provides facilities for creating and closing a stregmen (and
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cl ose), reading from and writing to a streanefd andw it e) and changing the fsfet

within the streami(seek). Non-byte-sized records of fixed or variable lengths constitute
another model. This model is very important for a number of business applications and are
directly supported by non-UNIX systems such as the Distributed Data Management facil-
ity in IBM’s SAA [Demers, 88], and VMS [Shah, 93]. Atomic objects is yet another file
model; data units in ARCADE [Delane§9] and files accessed through FTP [Postel, 85]

in their entirety are two examples. Atomic objects support calls to get and put data but no
calls for opening, closing or changindssts. More complicated models such as hypertext
objects [Halasz, 94] or data units coupled with data unit links [Dele8@yprovide
sophisticated facilities for traversing a graph of data objects. Currevatyy such models

are supported by layering functionality on top of the byte-stream model. This precludes
clients from conveying model-specific information to the file system implementation. The
implementation simply assumes a byte-stream mode and foregoes model-specific optimi-

zations.

In a distributed system, especially in one spread over a wide area network, accessi-
ble data resources are in multiple and autonomous physical and administrative domains.
Hence, thenamespaces through which the data resources are accessible are also separate.
Also, due to the lgre number of data resources available, namespaces that are indepen-
dent of the data resources have eyadr Archie [Emtage, 92] and X.500 [Hunt, 93] are
two such name services. Finallysers often like to customize their namespaces, while
applications expect to access resources through names of their choice. The need for cus-
tom namespaces has been acknowledged in two recent systems: Plan 9 [Pike, 93], a suc-
cessor of UNIX which provides p@rocess namespaces, and Prospero [Neuman, 92], a
naming system which allows users to customize namespaces. The key consequence of the
need for separate and possibly customizable namespaces is that treating naming and data

access togetheas in the UNIX file system, is no longer a good proposition.
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Like naming,data access should also be customizable. Compression and encryption
of data are two examples of functionality that might be desirable while storing and retriev-
ing data. For example, an encryption facility has been added to NFS [Blaze, 93] by chang-
ing the NFS source code. Howeveonsistent with our goal of providing client control,
the addition of such services should not require the source code for the entire file system

or knowledge of its internals.

Caching is an important implementation aspect in distributed file systems. Much
effort has been put into designing caching algorithms for file systems and sefestatef
algorithms have been implemented. Howetlez choice of an algorithm is dictated by the
file system implementation and clients cannot change the architectural decision. For
example, typical NFS implementations cache files for a very brief period, for about 30
seconds. Since this decision about caching is built into an implementation, clients cannot
improve the caching performance even when the file access patterns allow caching for a
much longer duration. Therefore, a caching interface and perhaps, multiple built-in cach-
ing protocols should be provided in a file system architecture. Thus, we agree with Carl

Hausers plea for explicit caching support [Hause2].

Finally, support fomultiple protocols is very desirable. Alreadyesources retrieved
on the popular \6fld-Wide Web are accessed using multiple protocols [Berners-Lee, 93].
Even outside the @b, NFS and AFS protocols are used for accessing files in small and
large workstations clusters in cohesive administrative domains; FTP and HTTP are used
for transferring files between administratively independent domains while IMAP and POP
are used for email. Administrative independence of domains afetedif underlying
resources make a strong case for supporting multiple protocols, at least in the architecture

of a file system. Dferent implementations can then supporedént sets of protocols.

So far we have focussed on the part of the file system that runs on the same machine

as the client of the file system. Even in the development of PFS, we will restrict our atten-

81



tion to this part and mention file-server issues only as and when relevant to client-side
design. The design of a full-scale distributed file system with servers and a new protocol
between client-side and sensde file system is beyond the scope of this work. More

importantly we want to use existing servers and ascertain the degree to which they can be

accommodated in our architecture.

Before discussing how these requirements can be addressed in a flexible file system
architecture, let us look at a current file system architecturentoe architecture. We
have chosen the vnode architecture because it is used in popular file systems and is sup-
ported in most if not all flavors of UNIX. Also it is the architecture used in AlX, which is
our platform for experimentation. &ill describe the basic vnode architecture and the
modifications and adaptations of that architecture in some of the file systemsll \Wse
this description to demonstrate the need for an improved architecture, to simplify the dis-

cussion of PFS and to serve as a basis for comparison.

5.2 Vnode Architecture

Traditionally, the file system has been an integrated part of the UNIX kernel [Bach,
86]. However the vnode architecture was introduced in SunOS [Kleiman, 86] to support
multiple kinds of file systemsand especially remote file systems. The original UNIX
architecture used an inode to represent a file inside the kernel. The vnode architecture
introduced a new abstraction called a virtual nodenode, for the file system indepen-
dent part of the inode. It also split the file system functionality into two parts; a generic
part sometimes called the Logical File Systerhle, and a non-generic part called &-V
tual File System ovFS. A new VFS can be added to the kernel and multiple VFSs can be

simultaneously used. Howeyedhe kernel contains exactly one LFS which is typically

1. In UNIX, the term ‘file system’ is used for the entire subsystem as well as its comporeents. W
will follow the same convention but we will explicitly distinguish between the two, where the meaning
is not clear from the context.
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considered immutable and unsubstitutable. The two parts, LFS and VFS interact through a

thin abstraction layer called thaode layer.

The vnode layer acts as a switch that multiplexderéift file systems as shown in
Figure 5.1. Three dérent file systems commonly used in the AlX kernel are shown as
examples of VFSs; CDRFS is the file system for a CD-ROM; JFS is the Journaled File

System, commonly used file system on the local disk, and NFS, a distributed file system.

LFS

Vnode Layer

CDRFS JFS NFS

Figure5.1: Vnode Layer asa File System Switch

The vnode layer abstracts thefeliEnces between multiple virtual file systems to
form one logical view for the LFS. The LFS on the other hand, interfaces with the rest of
the kernel and translates the UNIX file system API into operations supported by the vnode
layer. It also manages the combined namespace of the component file systems. The file
system namespaces are glued together throughotive () mechanism supported by the
LFS. Given a pathname, the LFS traverses the system-wide directory tree, one step at a
time, to make sure that the file operations requested by a client are serviced by the appro-

priate file system. Pathname traversal is discussed further in Section 5.3.4.9.

The vnode layer supports two kinds of operatiofsoperations that are performed
on a VFS andnode operations that are performed on a file object. A new file system that

supports these operations can be added to the AIX kernel through the kernel extension
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facility [IBM, 92]. VFS operations provide support for creating, mounting and unmount-

ing file systems. Vnode operations provide support for using files, directories and links.

A list of important vnode operations used in AlX is shownabl& 5.1 along with a
brief description of what the operations do. The set of operations varies acfesntif
flavors of UNIX but the variations are minor and not very relevant to our discussion.
Hence we will assume that these operations represent those in a generic vnode architec-
ture. The operations, adapted from the include<gles/ vnode. h> in AlX, are divided
into two sets in the table. The first set of operations manipulate file names, directories,
links and access control lists while the second set deals with the file represented by the
vnode. Although vnode implementations do not show suclexetitiation between oper-
ations, we have intentionally partitioned the operations to facilitate the description of the

Pi file system architecture in the following sections.

The vnode architecture is used in a number of distributed file systems. Commercial
file systems like NFS [SandligB4] and AFS [Howard, 88] and research file systems like
Ficus [Guy 90] and Coda [Steere, 92] use the vnode architecture. Likewise, it is used for
supporting diferent devices like disk and CD ROM. Hence, it is a good reference archi-

tecture for comparison.

5.2.1 Extension of the Vnode Architecture

The primary extension proposed for the vnode architectigtadking. Stacking of
vnodes was first proposed in [Rosenthal, 90]. The basic idea is to use a stack of vhode
objects instead of a single vnode. Each vnhode has the same interface but prdeides dif
functionality New functionality can then be cascaded on to existing one by pushing a
vnode on the stack for the file system. The result is a classicbdaged system at the
vnode level. The multi-layer structure does indeed provide greater flexibiityexam-

ple, a compression layer could be added to a vnode stack. Such a layer would modify the
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TABLE 5.1

VNODE OPERATIONS

vn_access
vn_create
vn_get acl
vn_link
vn_| ookup
vn_nkdir
vn_readdir

vn_readlink

Checks if a user has permissions to access a file
Creates a new file

Gets the access control list

Creates a new hard link

Gets a vnode corresponding to a name component
Makes a new directory

Reads a directory in standard format

Reads the contents of a symbolic link

vn_renove Removes a file

vn_rename Rename a file

vn_revoke Revokes access

vn_rndir Removes a directory

vn_set acl Sets access control information

vn_syn i nk Creates a symbolic link

vn_cl ose Closes a file

vn_f cl ear Clears portions of a file by setting the contents to zero
vn_fid Provides a file identifier

vn_fsync Flushes memory-resident data to disk or other storage medi
vn_ftrunc Truncates a file

vn_getattr Gets the attributes of a file

vn_i oct | Device-specific operation

vn_l ockct | Controls locks associated with files

vn_map Maps a file to a memory segment

vn_open Opens a file

vn_rdw Reads from or writes to a file

vn_sel ect Polls a vnode to check if it is ready for I/O

vn_setattr
vn_strat egy

vn_unnap

Sets attributes for a file
Reads or writes blocks

Unmaps a file from a memory segment
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vn_rdw () operation (@ble 5.1) so that the client always sees uncompressed data while
the underlying vnode always sees compressed data. Provision for adding a vnode layer in
a different protection domain has also been implemented in several systems [Heidemann,
94]. However as mentioned in Chapter 2, a layering technique like stacking cannot undo
what is done in a lower layer; in our case, the single-layer vnode architecture. The name
resolution problem in vnode architecture which is discussed in detail in Section 5.3.4.9, is

one example of a limitation that cannot be undone by layering.

5.2.2 Limitations of the Vnode Architecture

Vnode architecture is a good file system switch. But with reference to the desirable

features discussed in Section 5.1, ifexsf from the following shortcomings:
* LFS only supports the byte-stream oriented UNIX file system API
» There is no clear separation of namespace management from data management

* LFS, the irreplaceable and unmodifiable layer of the vnode architecture performs a
substantial amount of namespace management, thus reducing the freedom for a vir-

tual file system.

» There is no explicit support for caching

The byte stream API, while fairly powerful, does not express a rich enough set of
operations. For example, it does not allow an atomic file to be fetched in one step; rather a
file must be first opened and then read. This shortcoming of the API hinders the imple-

mentation of the first desirable feature discussed in Section 5.1.

Lack of separation between naming and data access functions is an impediment to
customization of namespaces. In the vnode architecture, a file is a named data object
where the name and the data are managed by the sameHsmite, an entity providing

name services for files is also expected to support operations for reading and writing files.
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LFS manages a machine-wide namespace on behalf of multiple file systems. It
keeps track of all the mount points in the file system name-tree; i.e. directories where two
namespaces are connected to each.difiece the LFS cannot be changed, the semantics
of mounting is severely limited. The LFS traverses a pathname internally while disclosing
only a part of the name at a time to a VFS. Hence, it also preempts opportunities for opti-

mization in component file systemseW¥ill discuss this issue in detail in Section 5.3.4.9.

Finally, caching algorithms are beyond the scope of the vnode architecture. Compo-
nent file systems like NFS and AFS use their own caching algorithms. But the fact that
vnode architecture does not recognize caching as an important file system activitfy cuts of
the component file systems from most user input regarding caching. An exception is the
f sync() call which instructs a component file system to flustiebsifand is invoked by
LFS when a client invokes the corresponding system call. But in a distributed system,
there is more to caching than a single call for flushing cachevirevisit this problem

in Sections 5.3.5 and 5.3.6.

The vnode architecture also fars from a more generic shortcoming. It assumes
that the granularity of a change is a VFS; i.e. to obtainfardift behavigran entire VFS
has to be replaced. Thus, there is no support for changing operations dynamically or for a
specific client. Of course, this level of flexibility is beyond the vnode architestdesign
goals and hence, it is not supported. But since we are starting frofarardiset of desir-
able features and the explicit goal of flexibiliye will address these shortcomings in the

following description of the PFS architecture.

5.3 PES Architecture

The Pi file system architecture is an application of the Pi approach discussed in
Chapter 4 to file systems. Hence we will discuss the scopes, contracts and interfaces that

constitute the architecture.eMWill refer to the vnode architecture as a source for evolution
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and as a basis for comparison. As mentioned in Section 5.1, we will focus on the client-

side part of the file system.

5.3.1 Scopes

There are two kinds of scope types in PFS: client-based and unit-based. Based on
the entities used for accounting and access control in UNIX, the three client-based scope
types areGroup, User andProcess. On the other hand, there are five unit scope types:
Subsystem, FileSystemType, FileSystem, File andOpenFile. A process always belongs to a
user and a user always belongs to a group, the primary group in UNIX. Likewise, a file
must belong to a file system which in turn must belong to a file system type. Thus, these

scope types form two containment hierarchies as shown in Figure 5.2.

Subsystem
Group FileSystemType
User FileSystem
Process File
OpenFile

Figure 5.2: Scopesin the PFS Architecture

Recall from Section 4.1.2.1 that each scope type can have multiple instances. For
example, a PFS implementation can have NFS and FTP-FS as two instakideSysf
temType, multiple file systems corresponding to FTP_FS, and hundreds of files in each file
system. In general, there may be multiple groups, users, processes, file system types, file

systems, files and open files. Howewlere is only one instance of the outermost scope
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type in a subsystem. These instances or scopes are used to maintain information like selec-

tions of contracts, pertaining to the corresponding entity like a process or a file system.

Scopes are linked together according to the containment hierarchy in Figure 5.2.
The parent of a scope can b&aséntly determined in order to expedite scope-based dis-
patch. Converselyor the purpose of garbage collection, all the children of a scope can be
efficiently traced. It is crucial to avoid searches in the scope hierarchy since search-ori-
ented solutions would not scale well for ay@number of scopes and would lead to unac-

ceptable run-time overhead.

Having discussed scopes, we can now turn our attention to contadessign con-
tracts, we will first apportion the overall functionality to six components. Then we will

discuss the role of each component and the contract supported by that component.

5.3.2 Functionality Decomposition

Functionality decomposition is the first step in designing contracts so that a client
can control smaller parts and specific functions of the file system. In the vnode architec-
ture, there are two components: LFS and VFS; in the PFS architecture, there are six com-
ponents as shown in Figure 5.3. These components are closely related to the desirable
features discussed in Section 5.1. The figure shows a client-side file system based on the
PFS architecture enclosed in a dotted box. The PFS file system allows a client to access
data from diferent sources, one of which is shown in the figure. A data source may be a
device like a disk or a remote file serv€he arrows inside the dotted box show caller
callee relationship between the components. According to the direction of the arrows, we

will refer to components agstream or downstream with respect to each other

A PFS implementation has multiple instances of each of the six components, just as
a UNIX file system has multiple VFSs. Howevéar brevity we have shown only one

instance of each functional component in the figure. A PFS implementation uses scopes to
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manage multiple instances of components. For example, an instance of the name caching

component may be used only for a specific file system.

» Naming| ,| Name -
Caching

. Access Data
Client == Provider /0 > Source
Data .| Data R

Object Caching
Mgmt

y

Figure 5.3: Functionality Decomposition in PFS

As a rough analogyhe access provider performs many of the functions of the LFS
in the vnode architecture. Howeyemnost of the naming-related functions of the LFS are
taken over by the naming component. The five components other than the access provider
perform the functions of a VFS in the vnode architecture. The components fit together in a

framework, which provides the glue code and miscellaneous services.

In accordance with the Pi approach, there is a contract associated with each of the
components. Recall from the previous chapter that a contract object consists of an inter-
face object (CIO) and a protocol object (CPO). The protocol object in a contract can use
certain resource objects and other contracts. Hence, in the following sections, we will dis-
cuss the six components, their resource objects and contracts, and how the components

collaborate to provide the overall subsystem functionality

In each of the sections, we will discuss two aspects of the component. First, the file
system functionality that the component provides and second, the Pi approach-based

structure of that component.
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5.3.3 Access Provider

The access provider component supports one or more models of files as discussed in
Section 5.1. A more elaborate hierarchy of the important file models is shown in Figure
5.4. This hierarchy may be extended further through subclassing. The root of the hierarchy
is a generic file type calleéile. Files are named objects. More precistigre is at least
one pathname associated with a file. Pathnames and name resolution are discussed in the

next section.

Atomic

Slf _contained Fixed_length_record

File Record_stream

Variable length_record

Complex

Figure5.4: Hierarchy of File Models

Self _contained files objects, as the names suggests, do not have external compo-
nents wherea€omplex file objects are like hypertext; they may have embedded links to
other files which may contain data or executable progr&ecard_stream file objects
have an dbet variable whileAtomic files do not export any variable for internajjaniza-
tion. Record streams may have records of fixed or variable sizes. UNIX files which are

byte streams, are a special case ofitked _length_record files with a byte-long record.

Different file models entail dérent APIs. An Atomic file can be retrieved without
specifying the amount of data while a record stream requires a call to chandgedhedof
Complex file exports a facility to return the links contained in the file either individually

(get _I'ink()) or as a listl(i st _I i nks() ). Following the Pi approach, PFS architecture
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provides a contract for the access provider component. The contract interface document-
ing the basic calls for the file model hierarchy is shown as C++-like pseudo-code in Figure

5.5. This interface forms the basis for all access provider implementations.

/1 Only the functions derived from Access_Protocol are shown
/1 Nam ng-related functions are deferred to the next subsection

cl ass Access_Provider_Contract _Interface

{ .
public:

/1l constructors and destructors - not shown

/1l for record streans only

i nt open(Pathnane* this_path, int option);
int close();

int seek(int offset, int from;

/1 for record streans and atom c objects
int read(void* buffer_ptr, int nmax_size);
int wite(void* buffer_ptr, int size);

/1 for atom c objects only
int get(void**);

/1 for complex objects only
i nt get_I|ink(Pathnanme* |ink);
st*

int list_links(Pathnane_|i link _list);

Figure5.5: Access Contract Interface

We have intentionally omitted one detail from the contract interface for brevity: a
parameter containing theeedentials of the client. The credential parameter is passed for
almost all calls in this and other contract interfaces. It allows the concerned component to
determine whether the client has permissions to receive the requested service, and to
request services from other components on behalf of the client. The exact form of the cre-
dentials is implementation-dependent but the credentials should provide enough informa-
tion for authentication and accounting. Credentials could contain process, user and group
ids or they could be more complex and contain a ticket obtained from a security service
like Kerberos [Steiner88]. Howeveyr since the issue of security is orthogonal to the
decomposition of functionalifyve will not explicitly state the parameter for credentials in

the discussions of access provider and other components.
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At run-time, the contract interface is supported by a contract object. When a client
makes the first call related to a file, a contract object is created. All subsequent requests
related to that file and that client are then serviced by that contract object. For example, in
the case of a stream-based fileppen() call leads to creation of an access provider con-

tract object. For other file models, similar actions are taken.

Unlike LFS, which cannot be changed, access provider CPOs are replaceable so that
they can cater to ddrent objects in the hierarchy of Figure 5.4. A client may also provide
a custom access protocol to exploit specific features of a file or slgauess pattern. For
example, an implementation handling complex objects may provide a prefetching. facility
Prefetching connected files (up to a limit of course) would substantially reduce the latency

of accesses by a client. Such a customization would be useful for a hypertext browser

Notice that the contract interface contains calls for multiple file models. This
enables a client to make a run-time selection of a protocol implementation that supports
the necessary subset of the calls. An access contract would consist of a CIO that supports
the interface in Figure 5.5, and a CPO th&atively implements a subset of the same
interface. For example, a client that wants to access atomic files would use a protocol
implementation that supporigead(), wite() andget () calls from the contract inter-
face. The implementation of other calls in the CPO can simply return an error indicating
that those operations are not supported for an atomic file. Thus, we have delayed the deci-
sion about the file model until run-time and thereby allowed a client to participate in the

decision.

In order to provide the functionality discussed in this section, an access provider
relies on two downstream components realizing naming and data object management
functions. The access provider invokes the appropriate functions on the naming compo-
nent and then the data object managsing the results returned by the forméaming

functions are discussed next.
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5.3.4 Naming

In PFS, a name provides information used by a client to identify a data object. It is
important to distinguish a name from an address or an identifier used for data storage. A
name has a meaning for a client while an address or a storage identifier has a meaning for
the storage implementation. For example, the name /bin/Is denotes to a client, an execut-
able file for listing directory entries. On the other hand, the addresses for disk blocks
where the file is stored are meaningful for the VFS implementation that stores and

retrieves the file. The naming component bridges the distinction between the two.

In this section, we will first define a number of resource objects like bindings, direc-
tories, namespaces and pathnames. Then we will describe two key activities performed by
the naming component: resolution and binding. The resource objects and activities will
help us in defining a naming contract. The flexibility features provided by the naming con-
tract distinguish the PFS architecture from the vnode architecture as described in Section

5.3.4.9.

5.3.4.1 Name

A name is a member of a language over some alphabet. A corresp@udimgve
name belongs to a subset of that language. For examapbec andabc/ abc are names
drawn from the language L =4|(b| c|/)’} defined over the alphabet A =a{b,c,/}
while a, b, ¢ andabc are primitive names drawn from the languags §( c)’}. Typically,
some characters or character sequences are resesapdrasors and a name is a concat-
enation of one or more primitive names separated using the separators. In the above-men-
tioned example, /' can be considered a separ&at the PFS architecture does not
specify any separators and leaves their specification to the implementati@udress or

a storage identifiehenceforth called ainl, can also be thought of as a name drawn from

2. A similar strategy has been used in the IBM microkernel [IBM, 94b].
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some language which may be defined over f@rint alphabet from that used for primi-

tive names. For example, a 32-bit virtual address is drawn from the langapgE3(

Since names and ids are syntactic entities, we will deal with them through resource
objects like bindings which encapsulate the syntactic entities and provide precise seman-
tics or behaviarThis allows us to replace implementations and thereby change the behav-
ior without having to specify the syntactic details in the PFS architecture. Consecaently
wider range of data sources and namespaces can be accommodated by the architecture.
Next, we will discuss the important semantic entities in naming which are implemented as

resource objects.

5.3.4.2 Binding

A binding is an association of a primitive name and an id, syntactically represented
by the two-tuple <name, id>. The id in a binding is quite flexible. It can identify a file, a
directory a link or a namespace. A binding is an opaque or encapsulated object. Its inter-
nal storage format is not known to its users. A given id may appear in multiple bindings;
i.e. there may be aliases for an id. Converselgame may appear in multiple bindings;
i.e. there may be a mechanism to disambiguate which is external to a name. A name is
boundto an id to create a binding and the nameesolvedto obtain the associated id.
Thus, bi nd() andresol ve() are the basic operations supported by a resource object

implementing a binding.

5.3.4.3 File-Binding

A file-bindingis the simplest kind of binding. The id in a file binding, calléaca-
tor, is used by other components of the PFS architecture to support operations on the iden-
tified file. For example, when the pathname corresponding to a file is resolvedirtimg

component returns a file-binding which is used by the data object management component

3. The word ‘binding’ is used both as a noun and as a verb; the former for denoting an object and
the latter for denoting the process of creating that object.
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for locating the file. In this sense, it isfdifent from other bindings which are manipulated

by the naming component.

5.34.4Link

A link is an association between two names; a source and a destination. As such, it is
a binding that relates two names. Howewtgorovides an additional operation for reading
the destination of the link. When the operatioasol ve() andbi nd() are invoked on a
link, the link automatically invokes the same operations on the binding corresponding to
the destination name. Further details of the semantics of a link are deliberately left unspec-
ified in the PFS architecture to allow lattitude to implementors. For example, when a link
is created, the link implementation may verify that the destination exists; it may also col-
laborate with the corresponding binding implementation to ensure that the link is deleted

when the binding is deleted to avoid dangling links.

5.3.4.5 Directory

A directory is a named container containing entries which are bindings. It is itself a
binding between a name and a container and it can recursively contain bindings for other
directories. The id in a directory binding is the identifier for the container; it may be the
address of the disk block where the directory is stored or some other identifier that can be
used to construct a directory object at run-time. It is important to note that a directory need
not be coupled to data on a storage device. For example, a directory may be constructed at
run-time through queries to a database. Like all bindings, a directory supgartse()

andbi nd() operations; in addition it provides ast () operation for listing entries.

5.3.4.6 Namespace

A namespace is a nhamed, structured collection of bindings. It too, is a binding
whose id identifies the collection. Specificablynamespace is a directed graph of bind-

ings where file bindings are denoted by leaf nodes, and directories and links are denoted
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by interior nodes. An empty directory may be denoted by a leaf node. As shown in Figure
5.6, an edge in the graph denotes a Aamprimitive name in case of an edge originating

from a directory node. In the figure, let us assumeSh&,, S,, S, are directoriesx; is a

link while Sg is a file-binding. Like the three bindings described above, a namespace also
provides operations for resolution and binding of names. Each namespace has an associ-

ated scope in the PFS architecture which is an instance of the file system scope type

/@x
@/@xw

Figure 5.6: An Example of a Namespace

shown in Figure 5.2

e

5.3.4.7 Federated Namespaces

Multiple namespaces may be glued together to create a tedglated namespace.
Each namespace retains full control over its portion of the federated namespace but agrees
to invoke resol ve() andbind() functions on other namespaces when a pathname
crosses its boundaries. In order to glue together namespaces, a nhamespace may support
operations tanount andunmount another namespace eWill revisit the diferent behav-

iors that are possible for mount in the next chapter

4. In this figure, following [ComeB9], we have used names to label edges rather than nodes. A
less precise but more popular depiction associates names with nodes.
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5.3.4.8 Name Resolution and Binding

Name resolution is the process of translating a name into an id. There are two ways
of looking at the resolution process: the classic approach of syntax-based translation
[Comer 89] or as we do in PFS, as a semantic process of a sequence of invocations on
resource objects. The PFS process models syntax-based translation, and it requires two

resource objects, pathname and context.

There are two simultaneous activities involved in resolution of a name in a
namespace. The namespace graph is traversed and as the graph is traversed, portions of
the name are considered resolvectoAtext object corresponds to the just visited node in
the graph. Apathname object encapsulates the name, and keeps track of the portion of the
name that has been resolved. If we are at 8&&de Figure 5.6 while resolving the name
al c, then resolution would proceed further with a context object corresponding t&hode
and the pathname object reflecting the fact thdtas been resolved. The resolution pro-

cess can be conveniently formulated as a finite state machine.

Consider a finite state machine (FSM) corresponding to the namespace in Figure
5.6. The nodes in the graph correspond to the possible states of the FSM. So we will use
the same names, .. S5 for denoting the current state. If we think of the labels on the
edges (names) as the inputs to a Moore matinatext objects can be thought of as the
outputs of the Moore machine. As the resolution process progresses, it moves from one
state to another by modifying the pathname object (consuming the input) and producing

context objects (producing the output).

A context object is a run-time representation of a binding. Hence, in the PFS archi-

tecture, name resolution proceeds by invoking #l ve() operation on a sequence of

5. A Moore machine is a finite state machine wherein an output is associated with each state and
each transition is labelled to indicate the input symbol(s) consumed by the machine in making the tran-
sition [Carroll, 89].
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context objects. Each invocation produces a new context object and causes a change in the
state maintained by the pathname object. For example, when theanameds resolved

in the namespace shown in Figure bes0l ve() operation is invoked on the sequence of
context objects corresponding to steédgsS,, S;, Ss as the three primitive namesp and

c are parsed in the pathname object.

A context object may be implemented as a contract object or simply as a resource
object. In the former case, its implementation could be changed at run-time while in the
latter case, even the minimal overhead of an indirection required in a contract object can
be avoided. Note that a context object is not the same as a binding. A binding is an object
that exists independently of any run-time invocations. A context object on the other hand
is a result of the resolution process; an object created at run-time based on a specific cli-

ent-request.

The process of binding is similar to the process of resolution. Tieeetite is that
when a directory or a binding is not found in the process of traversing the namespace, a
new binding is created. For example, if the name f is being bound to a file with id
then a new bindingfs I > would be created in the directoByg. The implementation of
PFS may impose further restrictions on binding. For example, it may return an error if a
request to bind/ b/ g/ h to some id is received when a directory correspondirg iog

does not exist.

The naming functionality is documented imaming contract interface which is
shown in Figure 5.7. This functionality is provided by a context object, which is the con-
tract protocol object (CPO) for the naming protocol. Resolution and binding are the two
most important and generic aspects of the protocol; other aspects shown in the figure are

specific to directories, links and namespaces.
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cl ass Naming_Contract _Interface

{ .
public:

/1l constructors and destructors - not shown

/1 functions commobn across all contexts

i nt resol ve(Pat hname* this_path, Context** returned_context);
i nt bind(Pathnane* this_path, Context* bind_to_this);

/1 file-supported function - provide id for data object manager
int get _id(id* returned_id);

/1 link-supported function - read the nane pointed to
i nt readlink(Pat hname* source_path, Pathname* destination);

/1 directory-supported function - get a list of directory entries
i nt readdir(Pathnane* dir_path, direntry_array* entry_ptr);

/1 nanespace- supported functions
i nt mount ( Pat hname* nmount _here, Context* nmount _this);
i nt unnount (Pat hnane* unnmount _from Context* unnmount _this);

/Il more functions to deal with attributes - not shown

Figure5.7: Naming Contract Interface

5.3.4.9 Comparison with Naming in the Vnode Architecture

In the vnode architecture, a substantial part of the resolution and binding process
occurs in the LFS portion of the subsystem which is not replaceable or modifiable (Sec-
tion 5.2). In the PFS architecture, most of the naming functionality has been moved into a
replaceable naming component. Hence, we can easily accommodate multiple simulta-
neously active namespaces witHeliént implementations. In the vnode world, this would
be analogous to moving the naming functionality into the VFSs. Of course, the contract
mechanism also provides the ability to select or replace the implementation for a given

namespace. These advantages will be discussed in greater detail in the next chapter

The diference in the name resolution approaches can be explained with an example
of resolution of the pathname/ b/ c. In the PFS approachesol ve() is invoked on the
root namespace with the pathname as gamaent. The implementation of the namespace

then internally performs resolution as discussed above and returns a context object corre-
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sponding the binding of the pathname and id. On the other hand, the following steps are

taken by LFS in the vnode architecture to resolve the pathnameéc

1. Find the vnode for the root, represented by the fitstHaracter in the pathname.
2. Invokevn_l ookup on the root vnode to get a vnode dor

3. If there is a VFS mounted on top of the vnodeafaget the root vnode for that VFS,
otherwise use the vnode obtained in the previous step.

4. Invokevn_| ookup on the vnode obtained in step 3.
5. Repeat steps 2 through 4 for primitive namesdc.

Note that LFS resolves the name one primitive name at a time; so the VFS imple-
mentation that actually implements the namespace sees only one primitive name at a time;
first a, thenb and thenc in the above exampleln contrast, in the PFS architecture, a
namespace gets an entire pathname at once. This is a signifitereihdd when we con-
sider the cost of cross-protection domain callb(@ 4.1). Vnode-style resolution works
fine when both the LFS and the namespace(s) needed for resolution are within the same
protection domain. Howevewhen the LFS and a namespace needed for resolution are in
separate domains, this resolution process introduces unnecessary overhead since a cross-
domain call is required faach primitive name in the given name. For longer names, this
overhead can be substantial. Researchers have tried to reduce the overhead by introducing
name caches in the same domain as LFS. For example, NFS uses a cache called Directory
Name Lookup Cache (DNLC) so that if the same name is resolved again, the overhead is
not incurred again [Goodheart, 94]. But the overhead is unnecessary in the first place and

can be avoided by providing the entire name to a namespace.

5.3.4.10 Naming and Scopes

Recall from Section 5.3.1, that there are multiple scopes in a subsystem. In particu-
lar we discussed FileSystem and FileSystgpeTscopes. Since naming is separated from
data management, there are corresponding scopes related to the naming component. A

NameSpace and a NameSpagel For example, X.500 would be a NameSpgpeT

6. This problem has also been pointed out ielpW, 93].
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scope while a particular X.500 namespace would be a NameSpace scope. These scopes

are at the same level as the FileSystem and FileSygpenstopes.

The other interesting scope-related aspect of naming is related to client scopes. One
of the common debates in operating systems is the scope of a federated hamespace. Sprite
[Welch, 90] implements a uniform namespace for a cluster of workstations, UNIX
[Ritchie, 74] provides a uniform namespace for all the processes on one machine and Plan
9 [Pike, 93] provides a pgrrocess namespace. In the PFS architecture, there is a
namespace associated with a process scope. Houweatanamespace may delegate all the
functions to a common namespace associated with the Subsystem scope. Hence, the deci-
sion of the scope of a namespace is left to the implementor who may even make it avail-
able to clients. The architecture provides the capability foppmress hamespace without

mandating it.

Name management is one of the two important parts of a file system. The other one
is data object management. It uses the id supplied by the naming component and allows
operations on the corresponding file for reading and writing data. Next, we will discuss

the data object management component.

5.3.5 Data Object Management

The Data Object Management (DOM) component is responsible for storage and
retrieval of data. Like the access provider component, it supports multiple file models.
However the access provider and naming components take care of converting the file
names into suitable locators, i.e. ids in file bindings. Hence, the DOM component deals

exclusively with file locators.

The DOM component shields the access provider from the details of the I/O proto-
col and caching. Like VFS, it presents a generic view of data objects through a contract.

The basic functions provided by DOM contract are similar to those provided in the access
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provider contract shown in Figure 5.5. In most cases, when a particular function is
invoked on the access provider contract, the corresponding function can be invoked on the
DOM contract after name resolution. Howeveccasionally the access provider may
have to translate the calls to convert from one file model to andtiaeslation would be
necessary when the file model supported by an instance of the DOM component is not the
same as that supported by the access provi@erexample, if an instance of the DOM
component supports the atomic model, while the file system client expects to see a byte-

stream model, the access provider would be provide the translation.

Apart from providing a generic view of data storage and retrieval to the access com-
ponent, the DOM component implements caching protocols using the mechanisms pro-
vided by the cache management component. A client that wants to change caching would
select an appropriate implementation of the DOM protocol. The selection facility is pro-

vided by the DOM contract.

The DOM component provides another important operagien.fil e() . It is pro-
vided on a peFileSystem scope basis; i.e. each file system has its own implementation of
the operation. The operation takes the locator of a file aggamant and searches for the
correspondingrile scope. If the scope is not found, a rféve scope and a DOM contract

object for that scope are constructed.

5.3.6 Data Caching

The caching component provides performance improvement for storage and
retrieval of data. It hides the high latency that is typical of may storage devices and remote
communication. At the same time, it must also ensure the integrity of data. There are three

distinct aspects of integrity: persistence, mutual exclusion and coherency

Persistence can be ensured by transferring data to non-volatile storage; typically a

disk. The need for persistence isset by the desire to provide low latency for writes and
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achieving high overall throughput for the file system. Hence, the caching component only
provides certain mechanisms and leaves it up to the DOM component or a client to decide
when data should be transferred to non-volatile storage. There are two calls in the caching
contract described in Figure 5.8 for persistenoee() andcopy() . In general, these two

calls efect the movement of data between storage levels including, but not limited to vol-
atile memory and disk. The same mechanism may be used for moving data to other stor-

age devices like tapes.

/1 Functions in the caching contract are used by the DOM component
cl ass Caching_Contract_Interface
publi c:
/1 constructors and destructors - not shown
/'l persistence-related functions
int nmove(Storage Id fromstorage, Storage_ |ld to_storage);
int copy(Storage |Id fromstorage, Storage |Id to_storage);
/1 mutual exclusion-related functions
int lock(int node, int* returned | ock id);
int unlock(int |ock_id);
/1 coherency-rel ated functions

int refresh();
i nt update();

Figure5.8: Caching Contract I nterface

Mutual exclusion is accomplished in the caching component using locks. Locks may
be acquired in read or write mode either directly by a client or by the DOM component. A
read lock provides shared access and assurance that no writer is allowed to access the file.
A write lock provides exclusive access. Locks may be used to provide transactional

semantics [Bernstein, 87] for file system operations.

Coherency is necessary in a distributed environment due to the presence of multiple
potentially modifiable copies. While mutual exclusion assures that there is at most one

writer, it does not assure that the copy being read is the latest or that an update made to a
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copy will be visible in other copies. Hence, as in the case of distributed shared objects dis-
cussed in the last chaptére caching component provides two calis:r esh() to get the

latest copy andpdat e() to propagate changes.

A natural follow-on of mutual exclusion for single copy and coherency for multiple
copies is the combination of the two callddtributed locks. A distributed read lock
assures not only that there are no writers changing the local copy but that the local copy is
the latest and that none of the remote copies are being modified. Likewise, a distributed
write lock assures exclusive access as if there is only one copy and that updates will be
propagated after the lock is released. Such a distributed locking mechanism is provided in
the architecture as an implementation option. Howewes not required and may not be

available in some implementations.

There is an important caveat about the caching mechanisms. As mentioned in the
beginning of this chaptethe PFS architecture does not deal with the design of file servers
in a distributed system. Instead, it provides an architecture for client file system. Hence,
the semantics of the distributed locking calls discussed above depends on the caching pro-
tocol implemented by the servdfor example, FTP and NFS servers do not maintain
information about the state of the client. Hence, a cache implemented using FTP [Postel,
85] and NFS [Sun, 89] protocols is also limited in its capabilibe client file system is
not informed when the file changes. Such limitations further increase the importance of
explicit calls liker ef resh() andupdat e() since they allow a client of the file system to

decide when multiple copies should be made coherent.

The caching calls are not limited to individual files. They also apply to a file system.
For example, the catlopy() can be used to transfer all the modified files in a file system

to the disk. Thus, a caching contract is associated with a file as well as a file system.
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5.3.7 Name Caching

Name caching component deals with similar issues as the caching component
described above. Howevethere are subtle dérences between the two components.
Directories and files deér in how they are modified and what semantics is expected of

them [Kistler 93].

A file is normally treated as an indivisible object. When a file is modified, an old
copy is considered useless. On the other hand, directories are slowly changing objects
with more predictable patterns of change. Thefedifrom files in three respects. First,
directories change more slowly than files. Second, the coherency constraints on an opera-
tion like r eaddi r () may not be the same as thoseread() operation performed on a
file. Third, and most important, modification to a directory typically occurs through inser-
tion or deletion of an entry or a change in attributes rather than as a complete change of
contents. The name caching contract exploits thegeratiices, and especially the third
one. Apart from the calls in the caching contract, it provides facilities for propagating
changes to a directory to another storage level or a remote machine through the calls

i nsert () anddel ete().

53.81/0

The last component of the PFS performs input and output operations for the
upstream components. It manages devices and communication with file servers. As such,
it has to deal with issues beyond reading and writing of files and directories. For example,
an ftp protocol implementation has to perform a handshake with a remote ftp server by
logging in, and it has to manage the connection with the ftp séfeace, unlike in other
components, most of the details of the I/O component must be left to the implementation.
They cannot be fully specified in the PFS architecture. The PFS architecture requires an I/

O contract to support at least one of the several file models discussed in Section 5.3.3.
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Additional implementation-specific calls may be provided in the contract for authentica-

tion and setting of parameters like timeout period.

5.3.9 Interfaces

The PFS architecture provides two interfaces for clients. The first interface provides
the basic functionality and is backed by default implementations of contracts. The second
interface provides additional control to clients and allows them to change contract imple-

mentations.

From a clients point of view files, directories and links are the basic entities in a
file system. The common operations are creating, deleting, reading and writing these enti-
ties. Hence, the first interface provides calls for performing these operations. Most of
these operations have already been documented in the access provider and naming con-

tracts shown in Figures 5.5 and 5.7.

A client seeking more control would like to deal with aspects of self-representation
of the file system. The common aspects would be scopes like hamespaces and file sys-
tems, internally used contracts like the caching contract and the implementations for con-
tracts. Hence, the second interface provides calls for the following tasks which have been

discussed in the preceding sections.

» Rearrangement of the federated namespace through mounting and unmounting of

namespaces

» Creation and deletion of scopes like namespaces, file systems, namespace types,

and file system types.
« Effecting caching directly through calls provided in the caching contract

* Manipulating existing contract implementations usingt _inpl () and
set _iml ().

* Providing a new contract implementation for one of the predefined contract inter-
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faces.

Thus, as discussed in Section 4.2.2, there are three levels of usage available to a cli-
ent. At the first and most basic level, the first interface provides calls that would be
enough for most clients. At the second level, a more sophisticated client can use the cach-
ing calls or select an implementation. Finadlysophisticated client may provide a custom
implementation. The three programming levels require significanfirelift and increas-

ing understanding of the PFS architecture and implementation.

This description of a clier#’'view completes the PFS architecture. Howeeefur-
ther clarify how the components fit togethket us consider a small example and walk

through the steps taken byfdifent components to provide a service to a client.

5.3.10 An Example

Consider a client that opens, reads and then closes a file. Let us assume that the cli-
ent wants to use the default implementations and that the file is a stream of bytes. The fol-

lowing sequence of actions is performed by the implementation:

1. The client invokes thepen() function provided by the PFSfirst interface.
2. The PFS framework creates an access provider contract object (Section 5.3.3).

3. The access provider object creates a penFile scope and determines the con-
tract implementations to be used by following the scope-based dispatch procedure
given in Section 4.1.2.2

4. The access provider object constructs a pathname object out of the client-supplied
name and callsesol ve() on the naming contract object associated with the client
process scope.

5. The naming contract object initiates the process of resolution given in Section
5.3.4.8. The process produces a sequence of context objects, and may span multiple
namespaces. If a binding corresponding to the pathname is found, the resolution
process is considered successful and a file context object is returned by the naming
component. Otherwise an error code is returned.

6. The access provider uses the locator provided by the file context object to request a
DOM contract object.

7. The DOM component searches its internal data structures for a contract object cor-
responding to the locator and, if found, returns the contract object. If a contract
object is not found, &ile scope is created and a new DOM contract object is con-
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structed using scope-based dispatch.

8. The access provider object invokgsn() on the DOM contract object. The DOM
contract object calls downstream components if it is necessary to interact with the
data source.

9. Control is returned to the client indicating the result ofoien() call.
10. Client invokes ead() on the PFS first interface.

11. The correspondingead() function from the access provider contract is invoked,
which in turn invokes ead() on the DOM contract object obtained in step 7.

12. The DOM contract object reads data with the help of the caching and/or 1/O compo-
nent.

13. Control and data are returned to the client indicating completion of the read request.
14. The client invokes!| ose() on the PFS first interface.
15. Actions similar to those in step& through 13 are performed forose() .

This sequence illustrates how the PFS components work together to provide file ser-
vices to clients. It also illustrates how the basic features of the Pi approach, viz. contracts
and scope-based dispatch, get used. At this point, we will conclude our discussion of PFS
architecture with a summary and then proceed to a discussion of its implementation and

evaluation in the next chapter

5.4 Summary

We started with the purpose of applying the Pi approach to a subsysteanogé
the file system and discussed the features that a new architecture should support. Support
for different APIs and data resources as well as tailorable naming and caching are some of
the desirable features for a new file system architectueedi¥¢ussed the vnode architec-
ture as a basis for comparison and evolutioa.tiién proposed the Pi File System (PFS)
architecture and discussed its components in detail. The PFS architecture is more flexible
than the vnode architecture due to fine-grain decomposition and control over naming and
caching. It uses scopes and contracts, two key ideas from the Pi approach to provide
greater control to clients. Finallye saw how clients can use a PFS implementation
through dual interfaces. Now we can discuss an implementation of the architecture and

evaluate the &ctiveness of the Pi approach for providing flexihility
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6. PROTOTYPE IMPLEMENTATION AND
EVALUATION

In the last chaptewe discussed the Pi File System (PFS) architecture. In this chap-
ter, we will present a prototype implementation of that architecture and selected experi-
ments performed with it. & will also analyze our experience with the prototype to

evaluate the éfctiveness of the Pi approach.

The goal of the prototype was three-fold: to demonstrate the feasibility of construct-
ing a flexible file system using the PFS architecture (Section 6.2.2); to implement a test-
bed for evaluating the fefctiveness of the Pi approach with respect to the goals discussed
in Chapter 2 (Section 6.2.3), and to understand the capabilities and limitations of the Pi
approach beyond the agenda of Chapter 2 (Section 6.2.4). But before discussing the results

in the light of these goals, we will explain the prototype implementation.

6.1 Implementation Overview

An implementation of the PFS architecture was constructed mostly at the user level
for easy experimentation. A kernel-level implementation in AIX would have been more
efficient (Table 4.1) but more cumbersome and complex to modi§o, as described in
Section 4.3.2.2, we wanted to allow extensions that use multiple protection domains.
Hence, an implementation consisting of one or more AIX processes was a natural choice.
Further to avoid reimplementing the low level storage management facilities provided by

AlX, the prototype was designed to use the AlX file system for storing data on disks.
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The implementation discussed in this chgptatled PFS, closely follows the PFS
architecture. Howeveit does not currently provide facilities to dynamically load protocol
implementations and to dynamically add new file system types. Howdigts can
select a protocol implementation at run-time and they can create new instances of the sup-
ported file system types. Also, protocol implementations and new file system types can be

added at compile-time as separate modules.

In this section, the overall ganization of the implementation is discussed and pro-
tection domain issues are briefly addressed. Additional implementation details are given
in the appendix. As in Chapter 4, the platform for experimentation was AIX 3.2.5 running

on 25 MHz, RS/6000 model 530 workstations.

6.1.1 Organization

The structure used for the prototype implementation is shown in Figure 6.1. It sepa-
rates the framework from the protocol implementations. The framework implements the
key ideas of the Pi approach like dual interfaces, scopes and contracts, while the protocol

implementations provide file system functionality like naming and caching.

DualIntf.
Contract Intf.
Framework—
| Scopes _Access Provider
PFS | Support Services Naming

Data Obj. Mgmt.

Protocol Implementations

Data Caching
Name Caching
I/0

Figure 6.1: Organization of the PFS Implementation
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Many of the entities shown in Figure 6.1 are realized as C++ classes. The classes
may have multiple run-time instances in a PFS implementation. For convenience, we will
start a class name with an upese latere.g.Pr ocess, while using a lowecase letter to

start the name of an object of that class,®.gcess.

6.1.1.1 Framework

The framework relies on two interface objects to field client requests: one for the
first or functionality interface and the other for second or control interface. The two
objects are instances of separate classes. Each interface object receives client-calls, per-
forms some preliminary processing and then invokes the functions supported by scopes

and contracts to provide the service requested by a client.

Scopes are implemented as instances of classes that represent the scope types
described in Section 5.3.1.8Miill use the same names for classes as those used for scope
types in Figure 5.2. All scope classes inherit from a base class Badlegcope. The
instances of clasBaseScope, which are contained in every scope through C++ inherit-
ance, keep track of the contract descriptors selected by a client for that scope. Scopes are
organized in a hierarchy according to the nesting property shown in Figure 5.2. There are
two subhierarchies, one for client-scopes and another for unit scopes. The top-level scope
namedsubsyst em scope is the only instance of classbsystemin a PFS. It provides
contract descriptors of default implementations to ensure that scope-based dispatch algo-
rithm of Section 4.1.2.2 terminates successfutiyfact, it also implements scope-based
dispatch for the entire subsystem. Given an instance of a clagsdikess or (penFi | e,
subsyst em scope traverses the corresponding sub-hierarchy of scopes and provides a
contract descriptoiThe order of traversal is: instances of clagsesess, User, G oup on
the client side, andypenFile, File, Fil eSystem Fil eSyst enType on the subsystem

side.
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The PFS implementation uses a separate contract interface class for each contract.
Each class uses an inheritance relationship similar to that shown in Figure 4.10 to support
two interfaces. It maintains information about constructors for contract protocol objects
(CPO) and the compatibility relationship between them. A contract interface object (CIO)
is given two descriptors obtained from the two scope sub-hierarchies. The CIO then
checks compatibility and creates an appropriate CPO. Once a CPO is created, the CIO del-

egates calls to the CPO.

The fourth part of the framework provides a set of support services. It includes func-
tions for initialization, proxies for allowing clients to communicate with the file system
and a few miscellaneous functions. When the file system process is started, the initializa-
tion code reads the configuration of the file system, createlilbegstem scope and dual
interface objects, initializes component file systems and namespaces and then waits for
client requests. When a client request is received through a, ghexgupport services
code invokes the relevant operation on one of the interface objects. The proxy code for the
client requests resides in the same address space as the client, and communicates the

parameters of a client call to the file system process.

6.1.1.2 Protocol I mplementations

While the framework provides flexibility-related services, protocol implementations
provide the file system specific functionality like name resolution, caching and 1/0. As
shown in Figure 6.1, protocols related to the six functional components of the PFS archi-
tecture are provided. The current PFS implementation includes default as well as alternate
protocol implementations. The latter are selected by a client explicitly through a
set _i npl () call supported by the second interfaces Will discuss a subset of protocol
implementations in the next section to illustrate how a client can change a PFS implemen-

tation.
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The PFS implementation relies on the AlX file system for storing files on the disk
rather than creating its own partition. The basic storage functionality is orthogonal to the
investigation of the Pi approach and the PFS architecture, so it was decided that the extra

effort was not worthwhile. There are three advantages of this decision:

* PFES can be easily started; the executable files as well as the configuration files can

be accessed using the standard API.

* PFS so started can provide access to the files stored by AIX. In this case, the AIX
file system is used as a data source accessed through PFS. A client can use naming

and caching features of PFS while accessing those files.

» The caching protocol implementations in PFS can use AIX files as local persistent
storage for remote data sources like FTP and IMAP servers. A remote file can be

cached in memory or as an AlX file on a local disk.

PFS currently supports the atomic and data stream file models. It provides I/O proto-
col implementations to access files stored by the AIX file system, files available on FTP
servers and email managed by IMAP servers [Crispin, 90]. A thin veneer of routines was
developed for accessing AlX files; an FTP implementation was developed from scratch to
access FTP servers and a freely available IMAP client written by Crispin [Crispin, 93] was

adapted for email.

6.1.2 Pocess Configuration

PFS is realized as one or more AIX processes separate from the client processes.
Two different configurations of the implementation are shown in Figure 6.2. The top one
is a simple single-threaded version with all the protocols implementations in the same pro-
cess. The bottom one is a multi-process version created for greater concutrienale-

ments a CPO for the 1/O contract in a process separate from the rest of the PFS. It shows
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that a CPO can be implemented in a separate process as discussed in Section 4.3.2.2.

However in the rest of the chapteve will focus on the single process version.

Process 1 Process 2
. PFS D
Client > > ata
Impl. Source
AlIX
Process 1 Process 2 Process 3
PFS PFS
Client » Main » /O CPQ——» Data
Impl. Impl. Source
AlIX

Figure 6.2: Piocess Configurations of PFS Implementation

6.2 Evaluation

We have shown that a file system can be constructed using the Pi approach and the
PFS architecture. Now we can turn to the evaluation of the Pi approach through a set of
experiments with the prototype. After discussing the experiments, we will examine the

effectiveness of the Pi approach.

6.2.1 Evaluation of Contracts and Scopes

We have selected three simple experiments that use PFS. These experiments shed
light on the desirable flexibility features discussed in Chapter 2. Out of the five features
discussed in Section 2.6, we have already covered the first feature in Chapter 4, viz. sepa-

ration of client-controllable aspects from the rest of the implementation through contracts.
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Contract implementations can be selected by clients while the framework implementation
cannot be altered. Nowve can look at the other four aspects: procedural control, incre-
mentality scope-control and overhead. One or more of these aspects are addressed in each
of the experiments. An analysis of the overhead involved in using the Pi approach follows

the discussion of the three experiments.

The description of each experiment contains the following:

The diference between the default and the non-default behaviors.

The reasons for the client-selected implementation not being the default implemen-

tation.

The procedure for changing the PFS implementation.

The results achieved due to the change.

6.2.1.1 Union Mount

The first experiment concerns the naming component discussed in Section 5.3.4. In
this experiment, a client changes the behavior forhet () call which glues together
multiple namespaces (Section 5.3.4.6). The default and client-selected behaviors for
mount () can be explained using Figure 6.3. The default implementation provides a
UNIX-like behavior; the mounted namespace shadows the part of the namespace that it is
mounted overHence, filesa. ps andb. ps become visible in the namespace while files
c. ps andd. ps disappearThe client-selected implementation realizes what is called a
union mount! [Pike, 93]. Amount () call causes a union of multiple namespaces at the
mount-point instead of shadowing. Hence, all four files become visible under the mount-
point paper s. Even multiple namespaces can be mounted at the same point without one

namespace shadowing another

1. Union mount is also implemented to a very limited extent in most shells through the mecha-
nism of environment variables lilATH. However such a mechanism is ad-hoc and remains outside
the purview of file systems.

116



M ount On Result

publications papers papers

a. ps b. ps C.ps d. ps a. ps b. ps

(a) Shadow Mount

publicati ons papers papers

C.ps d. ps

a. ps b. ps a.ps b.ps c.ps d.ps

(b) Union M ount

Figure 6.3: Shadow and Union Mount

Union mount helps a client create a customized namespace. A client can create a
single logical view out of multiple physical data resources. For example, if the two direc-
tories in the figure reside at fdifent locations, then papers on the same subject stored at
different sites can be made visible within the same direcargh a logical view may be
presented to a user by a browser client. The location information need not clutter up the
logical view of the combined namespace. Thus, users can obtain truly location-indepen-

dent names.

However union mount behavior is not necessarily appropriate for the default imple-

mentation due to the following reasons.
* Most clients in UNIX are implemented assuming shadow mounts.

* Union mounts can lead to collisions between names; directories mounted at the
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same point may have logically téifent files with the same file name. Most clients
are not equipped to handle name collisions.

Thus, in this case, a client has to instruct the subsystem implementation to use the union

mount implementation.

PFS includes a union mount implementation option for the naming contract. A client
selects the union mount implementation for itself by invokiexg i npl () on PFSS sec-
ond interface. In this experiment, the client requests that the change be applied to the cor-
respondingProcess scope. In Section 5.3.4.9, it was mentioned that €aotess scope
has its associated naming contract to implement-aneeess namespace. In this case, the
new implementation of mount() is made available to the requesting client by setting an
entry in the contract descriptor list. The entry specifies that union mount implementation
be used for naming contract for that process. Theredfterclient can use the union

mount functionality by simply invoking theount () operation.

This experiment shows that a client can obtain a desirable functionality even if it is
not deemed appropriate for the ‘common case’. Client participation in a significant design
decision, viz. semantics ebunt (), is possible at run-time and can be accomplished with-

out afecting other clients.

6.2.1.2 Prefetching

The second experiment concerns the data object management (DOM) component
discussed in Section 5.3.5. In this experiment, a client selects a non-default implementa-
tion which performs a whole-file read whenever a file is opened for read-only access. The
default implementation does not read the file urtild() is called by the client. When the
file being accessed is retrieved from a remote source, an FTP server in this experiment, the
two implementations show dfrent performance. The default one has to contact the
server twice, first for servicingpen() and then for ead() ; each time a connection has to

be set up with the server which causes a d&gyontrast, the client-selected implemen-
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tation connects to the server once and prefetches the entire file, avoiding a subsequent
connection for reading. In addition to saving the delay of an extra connection, this imple-
mentation reduces the latency foremd() call. Since the data is prefetched, tlkad()

call can be quickly serviced.

However the client-selected prefetching implementation is not appropriate as the
default implementation. A designer optimizing for the ‘common case’ will not select this

implementation for the following reasons:

» A file may be updated between the calen() andread(). All clients may not
want to miss the interim update and a file system designer has no way to predict

whether such an update is possible.

* A file opened in read-only mode may never be read; the client may just want the
meta-information such as the time of last modification or size. In this case, the

overhead of prefetching is unnecessary

» The prefetching implementation increases the latency fosgte ) call; the call
does not return control to the client until the entire file has been read.

Hence, again in this experiment, a client has to instruct the subsystem implementation to per-

form the prefetching optimization.

PFS includes a prefetching CPO implementation for the DOM contract. A client
selects the prefetching implementation through gbee i npl () function provided by
PFS5 second interface. In this experiment, the change is requested by the clidPriofor a
cess scope corresponding to the client progranthwhe help of the PFS librarthe client
communicates the appropriate scope and contract descriptors to the PFS. The PFS vali-
dates that the client has made a legitimate request. Since the indicated scope is the client
process, the request is accepted and an entry is created in the contract descriptor list for the
client process scope inside PFS. Then, the prefetching implementation is automatically

dispatched when the client opens a file.
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The prefetching experiment run using the FTP protocol for I/O yielded the following
results. The average cost of the sequence of caks() followed by aread(), was
reduced from 1.85 seconds to 0.71 seconds for a one kilobyte file. The numbers were
obtained on a platform consisting of two RS/6000 model 530 machines connected by a
10Mbps ethernet. PFS ran on one machine while a standard FTP server resided on the
other The experiment was repeated ten times to obtain the mean. Such a substantial
improvement in performance is possible because of the high overhead of connecting to an
FTP serverBut the magnitude of the performance improvement is perhaps less crucial.
The important implication is that a client can achieve significant gains through the ability

to change an implementation to suit its needs.

6.2.1.3 Caching

The third experiment also pertains to F-BOM component (Section 5.3.5). In this
experiment, a client requests a caching implementation for one of the component file sys-
tems, a file system providing access to an FTP sefherdefault implementation gets a
file from the FTP server in response toead() request but pges the copy of the file
once the file is closed. Hence, subsequent requests by the same or other clients require that
the file be fetched again. On the other hand, the caching implementation retains the copy
of the file for a certain period of time so that subsequedit() requests received within
that period, can be fedfiently serviced. As a result, the latency for thosed() calls is

reduced and the load on the server is also reduced.

However the caching implementation may not be appropriate as the default imple-

mentation for the following reasons:

» A cached copy could become stale if the master copy on the FTP server is updated
during the caching period. Stale data may not be acceptable for some applications

using the file system.

A file may not be read a second time during the caching period.
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» Caching files in this fashion can drain memory resources from other component file

systems and/or other processes running on the same machine.

Thus, as in the two previous experiments, a client has to instruct PFS to use the caching imple-
mentation. In doing so, the client indicates that the caching optimization is acceptable in spite
of the possibility of stale data and that it is worthwhile even with the required memory con-

sumption.

PFS includes a caching implementation for the DOM contract used for FTP file sys-
tem. A client selects the caching implementation by callgg i npl (). In this experi-
ment, the client requests the change fBrlaSystem scope rather than th&ocess scope,
and has the necessary privilege for doing so. In response detthiempl () request, the
PFS creates an entry in the contract descriptor list for the FileSystem scope. Thereafter

due to scope-based dispatch, a caching CPO is created for the DOM contract.

The machine configuration and the measurement method for this experiment was
the same as that for the previous one. Caching improved performareeel Of call from
416 milliseconds to 2 milliseconds for a 1kb file and from 629 milliseconds to 6 millisec-
onds for a 32 kb file for subsequertd() calls after the file was cached. Again the sub-
stantial diference is attributable to the overhead of accessing the data resource; it includes
the delay caused by the FTP protocol and the cost of reading the file from a disk on the
FTP serverBut as before, the key implication is that client participation can provide sub-

stantial gains for certain client-resource combinations.

6.2.1.4 Overhead

The three experiments discussed above show how a client can change the PFS
implementation. But there is an additional aspect of #E@&luation not revealed in these
experiments. W need to measure the overhead introduced by the flexibility mechanisms
proposed in the Pi approach and implemented in PFS. Contracts and scopes are the two

basic mechanisms in the Pi approach which can add overhead.
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A contract object relies on delegation from the interface object CIO to the protocol
object CPO. Delegation introduces an overhead that would not be otherwise incurred in a
subsystem. The other source of overhead is scope-based dispatch. Whenever a new con-
tract object is created, the scope hierarchies need to be searched for scope descriptors for
non-default implementations. The overhead for these two mechanisms is shaaintein T

6.1.

The granularity of the timer available on the RS/6000 platform is two microseconds.
Hence, the numbers in the first two rows were obtained by extracting the relevant code
from the PFS implementation, repeating the respective operations 10000 times with the
extracted code, and timing the run. The measurements were averaged over ten runs to
obtain the numbers inable 6.1. The variance was observed to be less than 0.2% of the
mean. Howeverin a lage subsystem, scope-based dispatch may introduce a little more

overhead due to hardware cache misses.

Table6.1

The Overhead of Flexibility Mechanisms

Mechanism Time

Delegation in a contract object 80 nanoseconds
Scope-based dispatch in PFS 5 microseconds
Cost of aset _i npl () call 2 milliseconds
Cost of aquery_i npl () call 2 milliseconds

The table also shows the costs of two calls introduced by the Pi approach. These
calls are used only by the clients using the second interface. Clients using only the default
implementations do not have to pay the price of these calls. On the other hand, the over-

heads in the first two rows are borne by all the clients regardless of whether they desire the
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extra control enabled by the Pi approach. Hence, we have been careful about keeping the

overhead low for those mechanisms.

The overhead numbers imfle 6.1 become more meaningful when compared with
the costs of other operations inside the PESIer6.2 shows the costs of common file sys-
tem-related operations like opening, reading and writing a file. It shows times for two data
source$ with significantly diferent overhead characteristics. The two tables indicate how

the costs arising out of the Pi approach compare with costs of subsystem origin.

Table 6.2

The Overhead of Internal File System Operations

. Time in milliseconds
Operation
JFS FTP server

Opening a file for reading 0.5 460
Reading a 1kb file 17 416
Reading a 1Mb file 1252 1321
Writing a 1kb file (flushed to disk/server) 46 512
Writing a 1Mb file (flushed to disk/server 1400 1513

This completes the description of selected experiments performed to demonstrate
client control and to measure overheads. Now we can consider the three-fold goal stated at

the beginning of this chapter

6.2.2 Feasibility

The PFS implementation has shown that the PFS architecture is a sound and reason-

able file system architecture. Thus, it has shown that the Pi approach céecheef

2. The column labeled JFS pertains to the Journaling File System, the file system for local disks
in AlX. The specific label is used to indicate that the numbers are not for NFS or CD ROM file system
which are also accessible through the standard AIX file system interface.
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applied to a subsystem. It has employed contracts and scopes, two key ideas from the Pi
approach in an existing operating system, AlX, using a mainstream language, C++. Next,

we will consider the five points mentioned in Section 2.6.

6.2.3 Assessment Based on the Evaluation

» Separation of client-controllable parts of the implementation: The Pi approach sep-
arates client control using contracts. Contract interfaces are defined by the sub-
system architecture while clients can replace protocol implementations. For
example, in PES, the framework is defined by the architecture while individual con-
tract implementations like the prefetching implementation are subject to client-con-

trol.

» Procedural control: Clients can make calls to select a specific implementation for
any of the contracts in a subsystem. In general, they can provide their own imple-
mentation for custom needs. Téet _i npl () call used in the file system realizes

procedural control.

* Incremental modification to an implementation: The granularity of a change in an
implementation is small. A whole subsystem need not be replaced; only specific
contract implementations can be changed. For example, only the naming imple-
mentation can be changed while reusing the rest of the file system that manages

data objects, caching and 1/0.

» Scope control for client-requested changes: A change made by a client can be
restricted to a certain scope. Scope-based dispatch ensures that a client-selected
implementation is used if appropriate. Changing the naming implementation for

one client without décting others is an example of scope-control.

* Negligible overhead when the flexibility features are not used and a modest over-
head otherwise: Delegation in contracts and scope-based dispatch impose a negligi-

ble overhead. Since they are used by all clients, the Pi approach has emphasized
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low overhead in their design. The numbers obtained for the PFS implementation
shown in Bble 6.1 support this design principle. The cost of procedural control is

also modest when compared to the cost of subsystem-specific calls.

6.2.4 Capabilitiesand Limitations

The design and implementation of PFS helped in understanding the value of the Pi
approach beyond verifying the goals discussed above. The Pi approach clarified file sys-
tem architectures by emphasizing thdedé#nt design decisions in various architectures.
The notion of a second interface borrowed from [Kiczales, 92b] also proved useful. It lead
to a small set of generic calls that can be carefully implemented to ensure integrity of the
implementation and reasonable performance. Replacement of implementations at the pro-
tocol object level is a strength of the approach. The object-sized granularity helps in keep-
ing the implementations internally consistent; e.g. the whole DOM protocol
implementation is replaced rather than just the implementation for the read or write opera-
tion. But the granularity is also a substantial improvement over sgrest granularity

seen in the early microkernel approach.

On the other hand, the Pi approach still leaves several important questions unan-
swered. It does not provide policies for restricting access to the second interface nor does
it deal with authentication issues required to implement those policies. Also, it does not
address the issue of protection for client-supplied implementations. Fimallyes not
directly provide declarative control to simplify the task of client developers. Many of
these limitations form the motivation for future work which is discussed in Chapter 8. But
they also relate to some of the concerns expressed about flexible operating systems in con-

ferences and USENET news groups. That is the subject of the next chapter
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7. CAVEATS AND CONCERNS

So far we have discussed how a client can change a subsysteptementation. In
doing so, we have assumed that the client developer understands the consequences of
making a change. In fact, we even explicitly stated that clients argexediflevels of
sophistication. Some will just use the first interface, others will select an existing imple-
mentation, and still others may provide an implementation. Still, it is important to at least
briefly discuss the need for caution in the use of flexibilibese areas for caution can be
treated as caveats for a client developer and concerns for a flexible subsystérhisiser

chapter discusses three such argde:operability, dependability andcomplexity.

Interoperability refers to the ability of a flexible subsystem to function with other
subsystems of an operating system in spite of changes. Dependability reflects its capacity
to provide certain essential services to clients in spite of changes. Complexity measures
the additional cost incurred in making a subsystem flexible. These three properties are fur-

ther explained below

The goal of this discussion is to provide a more balanced view of flexibility and to
relate it to some of the experience gained during the course of this work. The issues are
important in their own right and merit a much more detailed investigation which is outside

the scope of this work.

7.1 Interoperability

Consider traversing links in a directory structure in a flexible file system like PFS.

Suppose that a client has requested an implementation that keeps track of the symbolic
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links being followed so that movingp the directory tree (as i .. ) causes the file sys-

tem to backtrack along the link. For the namespace in Figure 7.1, the client would want to
be back in directorB after traversing the linE (which goes to £and then changing
directory to backtrack. Clearlyhis behavior is diérent from the normal behavior of a
UNIX file system which would take the client to A rather than B. Navigation up a direc-
tory tree is normally independent of the links followed down and is decided exclusively by
the parent of the current directolfow if the client has requested that the change be
applied to its user scope, an application using relative path names and running on behalf of
the same user would fail. For examplepae utility will not be able to interoperate with

the flexible file system changed in this fashion. It often uses relative file names and hence

expects the parent directory to be independent of the links.

A

Figure7.1: Linksand Parent Directoriesin a Namespace

This example illustrates the potential perils of a change. Of course, in this case it is
obvious that the client chose a wrong scope for applying changes. But more subtle prob-
lems can occur in practice. The gist of the problem is that an applicaiios (tility)
expected a certain behavior from a subsystem (file system) which was modified; the
invariance of certain expected behavior was lost due to flexibility features that allowed a
fairly fundamental change. The very fact that many invariances can be challenged by cli-

ent-control makes the interoperability problem an important one.
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7.2 Dependability

Dependability is a particularly important property of a subsystem that is expected to
be invariant and hence we will treat it separat@tyain, consider a file system that users
depend on for longevity of their data. When a machine crashes, the file system on the
machine is expected to recover from the crash and restore data to a consistent state. It is
widely known that the choice of a caching strategy determines how much data is likely to
get lost when a crash occurs. For example, write-back caching delays propagating the
changes made to a file to the server for better performance. If there is a crash between the
time awite() call is successfully completed and before the changes are propagated to

the serverthe newly written data is lost.

Typically, application writers are aware of this danger implicit in a file system that
does caching and take measures to limit the potential damage. HowWehercaching
implementation can be changed at run-time, say by increasing the period for which
updates are not propagated, applications may be subjected to unexpected risks. Thus, the
caching implementation selected by a client could adverdelgt éifie dependability of the
file system. Similar concerns arise in a communication subsystem regarding reliable mes-
sage delivery and in the scheduler regarding meeting critical deadlines for processes. Cli-

ent-control can challenge the fundamental property of dependability in these subsystems.

7.3 Complexity

The third concern is about the compleXitf implementations. The functionality
demanded from subsystems leads to complex implementations. Flexibility features further
add to the complexityl he run-time machinery required for selecting and/or adding imple-
mentations in a file system makes it more complex than its non-flexible counterparts. For

example, in the PFS implementation, several thousand lines of code are devoted to flexi-

1. Measures such as lines of code, development time are often used to quantify complexity of
large subsystems. Howevyeve will refrain from restricting to a specific quantitative metric here.
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bility features alone; the code does not implement any file system functiohikigwise,

clients that use the flexibility features also entail greater complexity

More complexity means greater developmefdreind more opportunities for bugs
and performance bottlenecks. Hence complexity becomes a concern in itself. On the other
hand, flexibility requires modularity which improves reliability of an implementation and
makes maintenance easieor example, a new name caching implementation can be eas-
ily developed for PFS without worrying about rest of the file system components. Also,
some of the flexibility code is likely to be reusable. Thus, complexity is more of a fradeof
concern where the advantages gained through modularity should be udedttthefcost
incurred in providing flexibility The tradedfin the Pi approach is that scope types cannot
be changed by a client and the granularity of implementation change is pegged at contract

protocol objects.

7.4 Remedy?

The concerns mentioned above are often raised in the operating system community
during the discussion of flexibiliyHence, it is important to pay attention to the caveats
and understand the potential problems that flexibility can cause. There is no known rem-
edy to completely solve the problems discussed here but there are measures to reduce the

risk.

» Restrictions on the use of flexibiliti?olicies should restrict the changes a client is

allowed to make based on client privileges and the impacts of each change.

» Emphasis on scope-control. Any change should be limited to the smallest appropri-

ate scope.

* Restrictions on the extent of flexibilibth minimum granularity should be required
for implementation replacement and certain parts of a subsystem could be deemed

immutable.
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In summary flexibility mechanisms are fefctive when coupled with policies for
disciplined change. More extensive experimentation with a number of mechanisms in a

variety of situations is required before flexibility can be used in mission critical situations.
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8. CONCLUSIONS

Design decisions in system software can be mdextefe if they are based on
application input. This dissertation has proposed the Pi approach, a method to make sys-
tem software more flexible and, by giving applications disciplined control over software
implementations. This chapter summarizes the stidgusses its contributions and sug-

gests directions for future work.

8.1 Summary

The Pi approach is based on the idea of dual interfaces for a subsystem: one for
accessing conventional functionality and the other for allowing clients to change the
implementation. It emphasizes incrementality to reduce the burden on clients, scope-con-
trol to restrict visibility of a change and low overhead mechanisms to reduce the perfor-
mance penaltylt builds on the recent work in reflective languages and provides a few

simple design patterns that can be used for flexible architectures and implementations.

The Pi file system architecture uses the Pi approach to address design choices in file
systems. Instead of codifying specific decisions, it provides a framework to accommodate
multiple decisions. The actual decisions can be made by a file system implementation at

run-time, in collaboration with applications using the file system.

Experience with the Pi file system prototype indicates that flexibility is desirable in
file systems and realizable through the PFS architecture. The PFS implementation has
enabled clients to obtain new functionality and improve performance by selecting the

most appropriate implementation. In particuf@ming and caching can be tailored by cli-
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ents. At the same time, the overhead of flexibility mechanisms is a small fraction of the

cost of providing the required service like reading a file.

8.2 Contributions

This work has taken an important step in making system software flexible. Its con-
tributions can be divided into two categories: approach for flexibility and application to

file systems.

The Pi approach has provided two key mechanisms for flexibility: contracts and
scopes. These mechanisms are useful for decomposing the functionality of a subsystem

and controlling run-time changes by clients.

» Contracts: A clean separation between interface and implementation can be
achieved using contract objects. Hence, implementations can be substituted at run-

time while providing the service promised by the interface.

» Scopes: A record of changes to the subsystem implementation can be maintained
using scopes. Scope-based dispatch ensures that client-specified implementation
choices are used in deciding which implementation should be used for contract

objects.

The second area of contribution is file systems. Here the Pi file system architecture

provides the following benefits:

» Modular architecture: Separation of file system functionality into six components
using contracts allows fine-grain control which is not possible in other file system

architectures. It also facilitates experimentation by allowing incremental changes.

* Naming: Separation of naming from the rest of the file system is a particularly
important step in providing customized access to a wide range of data sources.
Users can create their own namespaces without being shackled to location-based

naming. In addition, the name resolution procedure followed in the PFS architec-

132



ture is an improvement over the widely used vnode name resolution procedure.

» Caching: Caching is a critical component of file system functionalllye PFS
architecture has explicit facilities for controlling caching. Hence, applications are

no longer restricted by file system designers’ decisions about caching.

8.3 Directionsfor Future Work

This work can be extended in a number of interesting ways. Again, there are two
main categories for future work. First, the flexibility approach can be significantly
enriched by addressing policies for restricting changes, protection and tool support. File
system architecture and implementation can be enhanced by adding virtual memory sup-

port and evolving the vnode implementations.

* Palicies for client-control: A thorough investigation of policies for restricting cli-
ent-requested changes would help in addressing commonly expressed concerns
about flexibility Experimentation with diérent policies in various subsystems

would be required to understand the problems caused by client-control.

* Protection: While the Pi approach allows proxy-based implementations, it does not
provide suficient support for safely adding client-supplied code to a subsystem. A
current project being conducted in the Distributed Computing Research Lab is
investigating this area [Banerji, 94b].

 Tool support: Contract objects can be more easily and widely used if their genera-
tion can be automated. SOM emitter frameworks [IBM, 93b] could be used to cre-

ate tools for automation.

* \irtual memory support: The PFS architecture could be enhanced to allow memory
mapping of files. Use of virtual memory facilities can substantially improve the

efficiency of PFS implementations.

Native implementations: The PFS architecture could be implemented directly on
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hardware. Such a prototype would not use the services of another file system and,

hence, is likely to provide better performance.

* Vnode implementation: Implementations of the vnode architecture which are
widely used in commercial systems could be modified to incorporate PFS features.
A second interface, a change in the naming component, support for contracts and
the addition of scope-based dispatch would be required to accomplish the modifica-

tion.
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APPENDIX A.IMPLEMENTATION SUMMARY

The details of the implementation discussed in Chapter 6 are summarized here. The
organization of this chapter is based on Figure 6.1 on pHEheThe components of the
PFS framework and their interoperation are discussed in the following sections. The dis-
cussion uses brief introductory text and C++ code annotated with comments for explana-

tion.

A.1 Framework

A.1.1 Dual Interfaces

As per the PFS architecture, the prototype has two interfaces reified as interface
objects. The class definitions for these objedtsst _i ntf andsecond_i ntf are shown
below The first interface object provides access to the basic file system functiortadity
second interface object provides services for clients to change implementations and create
new namespaces and file systems. It also provides functions to add and remove client

scopes which are used by the support services component.

Most functions provided by the interface classes have a parameter for passing client
credentials. The typer ed defines the credentials for a client and contains information
about client scopes: group, user and process.

class first_intf

{

publi c:
/1 constructor needs a pointer to the outernost scope
first_intf(SubsystenScope* ssp);

/1 data object related functions
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private:

b

nt open(char* filenane, int flags, cred* cp);

nt close(int fd, cred* cp);

nt read(int fd, void* buf, int size, cred* cp);
nt wite(int fd, void* buf, int size, cred* cp);
nt seek(int fd, int offset, int from cred* cp);

int get(char* filenane, void* buf, int size, cred* cp);
int put(char* filenane, void* buf, int size, cred* cp);

/1 naming related functions

/1 basic nam ng functions
i nt resol ve(Pat hname*, Context**);
i nt bi nd(Pat hnane*, Context*);

/1 1'ink-supported function - read the name pointed to
i nt readlink(Pathname* source_path, Pathnanme* dest_path);

/1 directory-supported function - list directory entries
i nt readdir(Pathnane* dir_path, dirent_list* entry_list);

/'l nanmespace-supported functions
i nt mount ( Pat hname* nmount _here, Context* nmount _this);
i nt unmount ( Pat hname* unnmount _from Context* unnount this);

/1 function for getting the AP contract

APContract* get_APContract(int fd, cred* cp, client_descr*
crp);

/1l use a nmenber instead of a global variable

Subsyst enScope* subsyst enscope;

class second_intf

{
publi c:

/1 constructor needs a pointer to the outernost scope
second_i nt f ( Subsyst enScope* top_scope_ptr);

/'l scope-related functions

/1 create/renove client scopes
int adddient(cred* client_credp);
int remCient(cred* client_credp);

/1l construct a new file system

int newfs(int fstype_ id, void* fs_parm cred* client_credp);
/1 construct a new nanespace

int newns(int nstype_id, void* ns_parm cred* client_credp);

// contract related functions

int set_inpl(scope_descr* sdp, contract_descr* cdp, cred*
client_credp);
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i nt query_inmpl (scope_descr* sdp, contract_descr* cdp, cred*
client_credp);

private:

/1l use a nmenber instead of a global variable
Subsyst enScope* subsyst enscope;

The interface objects, one for each class, are instantiated when the PFS implementa-

tion isinitialized. Support service component is responsible for their instantiation.

A.1.2 Scopes

The scopes discussed in Section 5.2 are implemented as classes. All scope classes
are derived from the base class BaseScope which provides the implementation for com-

mon functions. The implementations are then reused or specialized in the derived classes.

cl ass BaseScope

{

public:
/1 constructor sets the default inplenentations
BaseScope(int default_inpl =I NVALI D_CI D)

/1 navigation through the scope hierarchy
virtual BaseScope* get _parent();

/] identify this scope in the hierarchy
virtual void id(scope_descré& sd);

/1 get the contract inplenentation id

int get_contract(int contract_nane);

/1 set the inplenentation id for the specified contract
/1 cd is the contract descriptor

int set_contract(contract_descr cd);

private:
/1 maintain a list of contract inplenentations
/1 used to inplenent get contract()
ContractList* cl p;
The derived scope classes are linked together in a tree structure for easy navigation
through the scope hierarchy. Client scopes and the unit scope Fi | e, are also hashed for

faster access than would be permitted by the linked list-based tree structure.
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A.1.3 Contract Interfaces

Contract interface objects are instances of contract interface classes. The class defi-
nitions have been discussed in Chapter 5 in the context of the PFS architecture. The com-
mon functionality used by all contract interface classes is captured in the class
Met aCont r act . Met aCont r act IS an abstract class; a derived class must be used for creat-

ing instances.

cl ass Met aContract

{
public:
/1 set and get the inplenentation for this contract
virtual int set_inpl(Inmplld) = O;
virtual int query_inpl(lnplld*) = O;
i

cl ass ContractLi st

{

publi c:
/1 default constructor; set all inmpl. ids to invalid val ue
Contract Li st ()
/1 set inpl. ids to default _inpl
ContractList(int default _inpl)
/1 set inpl. id for a specific contract
Contract Li st(contract _descr cd)
/1 sonetinmes the default copy constructor will get used
Contract Li st(const ContractList& cl)
/1 accessor functions - get/set the contract inpl. id
int get(int contract_nane) const
int set(contract_descr cd)

private:
/1 array for maintaining inpl. ids; one per contract
i nt descr _array[ LAST _NAME+1];

i

A.1.4 Support Services

Support services allow the other framework components to utilize AlX services and

interact with clients. They are responsible for configuration of a PFS implementation, its
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initialization and client communication. As such, they are not defined in the Pi model and

hence are very implementation specific.

Configuration refers to the selection of features for a PFS. Several PFS implementa-
tion features such as the number of processes used, the mode of communication between
the processes, and the presence of a kernel-resident VFS component can be determined
while starting a PFS. Support services use a configuration file to determine these features

and initialize a PFS accordingly

Initialization involves the creation of key PFS framework and AlX entities. Dual
interface objects, subsystem scope and related data structures are the framework entities
that need to be created before any client requests can be serviced. Processes, System V
IPC message queues, shared memory and semaphores are the main AlX entities that need

to be created.

Communication allows a PFS to interact with its clients. There are two parts of the
communication support services. One part is a set of libraries that are linked with the cli-
ent code; it creates message queues for the client process and provides wrappers for the
calls supported by the dual interfaces. It frees clients from the details of routine message
exchanges with the PFS servEhe other part is linked with the PFS code and manages

communication at the server end.

Frameworks based on the Pi model, as in PFS, could be created for communication
and process management. The support services would then consist of a much smaller glue
code between cooperating frameworks. Howetlee current implementation does not
provide such a flexible structure. Instead, it uses a conventional implementation for sup-

port services while concentrating on the file system framework.
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A.2 Protocol | mplementations

While the framework provides flexibility to choose alternate implementations, pro-
tocol implementations provide the file system functionalityey support the interfaces
discussed in Chapter 5; these interfaces are exactly the same as the first interfaces of con-

tract interface classes.

Protocol implementations embody the peculiarities of the protocols they support.
For example, the 1/0O protocol implementation for FTP is are quiter€lift from that for
IMAP. Hence, they are custom developed for specific design decisions such as caching

upon read or reversible traversal of links.
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